
KodeKloud.com

KUBERNETES
CERTIFIED

APPLICATION
DEVELOPER

Start Here

1

2

KodeKloud.com

Mumshad Mannambeth
Solutions Architect | Trainer | 55,000 Students | 10,227 Reviews | 4.5 Star Rated

BEST SELLER BEST SELLER

BEST SELLER

HIGHEST RATED

BEST SELLER

Hello and welcome to this course on the Certified Kubernetes Applications Developer.
My name is Mumshad Mannambeth and I will be your instructor for this course.
So about me, I am a Solutions Architect specializing on Cloud, Automation and
DevOps Technologies. I have authored several Best Seller and Top Rated courses
Docker, Kubernetes and OpenShift as well as automation technologies like Ansible,
Chef and Puppet. This course is the second installment in the series on Kubernetes
and focuses on a certification.

2

KodeKloud.com

Course Structure

Lecture

Quizzes

Coding Exercises

Demos

Tips & Tricks

Q & A

Let’s take a look at the structure of this course. We start with a series of lectures on
various topics in Kubernetes, where we simplify complex concepts using illustration
and animation.

We have optional quizzes that test your knowledge after each lecture.

We then have coding quizzes that will help you practice what you learned on a real
live environment right in your browser. The kubernetes certification is hands-on, so
the coding exercises will give you enough experience and practice on getting ready
for it. More on this in the upcoming lectures.

We will also discuss some tips & tricks to crack the certification exam.

And as always if you have any questions, you may reach out directly to us through our
Q&A section.

3

KodeKloud.com

Pre-Requisites

• Lab Environment

• Kubernetes Architecture

• Master and Worker Nodes

• Pods, ReplicaSets, Deployments

• Command Line - kubectl

• Understanding YAML

• Services

• Namespaces

Now, this is one of the course in the series on Kubernetes and focuses on getting the
Kubernetes Applications Developer Certification. So a basic understanding is required.
For example, you must know how to set up a lab environment to practice on. The
certification curriculum does not include kubernetes setup or install, so you could
setup a learning environment anyway. We discuss a lot of these in the beginners
course. You also need a good understanding of YAML language for creating
configuration files in kubernetes and a basic understanding of what master and
worker nodes are, and what Pods, ReplicaSets and Deployments are. We do refresh
some of these topics in this course, but if you are an absolute beginner I highly
recommend taking my Kubernetes for the Absolute Beginners course.

4

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Let us now look at the Course Objectives. The objectives of this course are aligned to
match the Certified Kubernetes Application Developer exam Curriculum. We will
discuss about details around the Certification itself in one of the upcoming lectures
before heading into any of these topics.

5

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Kubernetes Architecture

Create and Configure Pods

We start with the core concepts – we have covered a lot of the core concepts in the
beginners course. We will however quickly recap some of these in this course to
refresh our memory. Such as the kubernetes Architecture, what PODs are and how to
create and configure PODs etc.

6

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

The next section is on Configuration and covers topics like ConfigMaps,
SecurityContexts, Resource Requirements, secrets and service accounts.

7

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Ambassador

Adapter

Sidecar

We will then look deeper into Multi-Container Pods. The different patterns of multi-
container pods such as Ambassador, Adapter and Sidecar. We will look at some
examples and use cases around these.

8

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Readiness and Liveness Probes

Container Logging

Monitor and Debug Applications

We then learn about Readiness and Liveness Probes and why you need them. We will
also look at some of the Monitoring, Logging and Debugging options available with
Kubernetes specifically around Pods, containers and applications.

9

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

We then move on to Labels & Selectors. And then Rolling updates and rollbacks in
deployments. We will learn about why you need Jobs and CronJobs and how to
schedule them.

10

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Understand Services

Network Policies

We will then learn about Services and Network Policies.

11

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Persistent Volumes

Persistent Volume Claims

And finally we look at Persistent Volumes and Claims. For all of these topics, we have
lectures that makes these complex topics easy to understand. Followed by coding
challenges where you will be practicing what you learned on a real environment. Let’s
take a look at that.

12

KodeKloud.com

Practical Exercises

Check Links
Below

Try Here!

Watch it here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6731376

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743640

13

KodeKloud.com

KUBERNETES
CERTIFIED

SERIES

14

KodeKloud.com

Installation

Configuration

Administration

Integration

Providers

Resources

Networking

Logging
Federation

Addons

Architecture
Containers PODs

ReplicaSets

Deployments

Services

Security

Secrets

ConfigMaps

Storage

Persistent Volumes

P Volumes Claims

Load BalancingStatefulSets

Jobs

CronJobs

NameSpaces

Taints & Tolerations

Ingress

YAML

VirtualBox

Hello there. Before we begin, I want to spend a minute on the Kubernetes Series of
courses. Kubernetes is one of the most trending technology in cloud computing as of
today. It is supported on any cloud platform and supports hosting enhanced and
complex applications on various kinds of architectures that makes it a vast and
complex technology. There are a set of pre-requisite knowledge required such as
containers, applications, YAML files etc. A lot of topics to discuss, a lot of concepts to
cover such as the Architecture, Networking, Load Balancing, a variety of monitoring
tools, Auto Scaling, Configuration, Security, Storage etc.

15

KodeKloud.com

Installation

Configuration

Administration

Integration

Providers

Resources

Networking

Logging
Federation

Addons

Architecture
Containers PODs

ReplicaSets

Deployments

Services

Security

Secrets

ConfigMaps

Storage

Persistent
Volumes

P Volumes Claims

Load BalancingStatefulSets

Jobs

CronJobs

NameSpaces

Taints & Tolerations

Ingress

YAML

VirtualBox

There are students from different backgrounds, such as the Absolute Beginners to
Kubernetes, or those with some experience looking for specialized knowledge in
Administration or those from a development background looking for concepts
specific to Application Development on Kubernetes.

16

KodeKloud.com

Installation

Configuration

Administration

Integration

Providers

Resources

Networking

Logging
Federation

Addons

Architecture
Containers PODs

ReplicaSets

Deployments

Services

Security

Secrets

ConfigMaps

Storage

Persistent
Volumes

P Volumes Claims

Load BalancingStatefulSets

Jobs

CronJobs

NameSpaces

Taints & Tolerations

Ingress

YAML

VirtualBox

And there are two Certifications in the mix as well. One for Administrators and
another for Application Developers. Covering all of these topics for all of these
students in a single course is an impossible task.

17

KodeKloud.com

Kubernetes Series

Installation

Configuration

Administration

Integration

Providers

Resources

Networking

Logging

Federation

Addons

Architecture

Containers

PODs

ReplicaSets

Deployments

Services

Security

Secrets

ConfigMaps

Storage

Persistent Volumes

P Volumes Claims

Load Balancing

StatefulSets

Jobs

CronJobs

NameSpaces

Taints & Tolerations

Ingress YAML

VirtualBox

CERTIFIED
KUBERNETES

ADMINISTRATOR

COURSE

KUBERNETES
FOR THE

ABSOLUTE
BEGINNERS

COURSE

CERTIFIED
KUBERNETES
APPLICATION
DEVELOPER

COURSE

Which is why we created a 3 course series, so each course can target specific
audience, topics and certifications. The Kubernetes for the Absolute Beginners
course, the Certified Kubernetes Administrator's course and the certified kubernetes
application developer’s course.

18

KodeKloud.com

KUBERNETES for the Absolute Beginners

KUBERNETES for Administrators

KUBERNETES for Developers

Let’s look at what we cover in each of these courses.

19

KodeKloud.com

KUBERNETES for the Absolute Beginners

KUBERNETES for Administrators

KUBERNETES for Developers

Lab Environment Pre-requisites - YAML

PODs, Deployments Networking Basics

Services Micro-Services Architecture

Demos Coding Exercises

The kubernetes for the Absolute Beginners course helps a beginner having no prior
experience with containers or container orchestration get started with the concepts
of Kubernetes. As this is a beginners course, we do not dive deep into technical
details, instead we focus on a high level overview of Kubernetes, setting up a simple
lab environment to play with Kubernetes, learning the pre-requisites required to
understand and get started with kubernetes, understanding the various concepts to
deploy an application such as PODs, replica-sets, deployments and services. This
course is also suitable for a non-technical person trying to understand the basic
concepts of Kubernetes, just enough to get involved in discussions around the
technology.

20

KodeKloud.com

KUBERNETES for the Absolute Beginners

KUBERNETES for Administrators

KUBERNETES for Developers

HA Deployment Kubernetes Scheduler

Logging/Monitoring Application Lifecycle

Maintenance Security

Demos Coding Exercises

Troubleshooting Core Concepts

Certified Kubernetes Administrator (CKA)

The Kubernetes for Administrators course focuses on advanced topics on Kubernetes
and in-depth discussions into the various concepts around Deploying a high-
availability cluster for production use cases. Understanding more about scheduling,
monitoring, maintenance, security, storage and troubleshooting. This course also
helps you prepare for the Certified Kubernetes Administrator Exam and get yourself
certified as a Kubernetes Administrator.

21

KodeKloud.com

KUBERNETES for the Absolute Beginners

KUBERNETES for Administrators

KUBERNETES for Developers

Core Concepts ConfigMaps, Secrets & ServiceAccounts

Multi-Container Pods Readiness & Liveness Probes

Logging & Monitoring Pod Design

Demos Coding Exercises

Jobs Services & Networking

Certified Kubernetes Application Developer (CKAD)

The Kubernetes for Developers course is for Application Developers who are looking
to learn how to design, build and configure cloud native applications. Now you don’t
have to be an expert application developer for this course and there is no real coding
or application development involved in either this course or the certification itself.
You only need to know the real basics of development on a platform like python or
NodeJs.

This course focuses on topics relevant for a developer such as ConfigMaps, Secrets &
ServiceAccounts, Multi-container Pods, Readiness & Liveness Probes, Logging &
Monitoring, Jobs, Services and Networking. This course will also help you prepare for
the Certified Kubernetes Application Developer exam.

All of these courses are filled with Coding Exercises and quizzes that will help you
PRACTICE developing and deploying applications on Kubernetes.

Now, remember that there are some topics that overlap between these courses. So
we recap and discuss them as and when required.

22

KodeKloud.com

KUBERNETES for the Absolute Beginners

KUBERNETES for Administrators

KUBERNETES for Developers

Now you don’t have to take these courses in Order. If you are an administrator, you
may chose to take the Beginners as well as the second course and get yourself
certified as a Kubernetes Administrator. Or take the beginners course and the
developers course to get yourself certified as a Kubernetes Application Developer.
Which I’d say is the easier of the two if you were to ask me.

So if you are ready, let’s get started.

23

KodeKloud.com

Hello and welcome to this lecture. In this lecture, we will look at some of the details
around the Certified Kubernetes Application Developer program. What it is, why you
need it and how to get started with it.

24

KodeKloud.com

Source: Google Trends

Kubernetes Trend

There is no doubt about the fact that the adoption of Kubernetes is expected to grow
exponentially in the coming years, as seen in the graph from Google Trends. And so it
is important for us to be prepared to establish credibility and value in the market.

25

KodeKloud.com

The Kubernetes Application Developers Certification, developed by the Cloud Native
Computing Foundation in collaboration with The Linux Foundation, does just that. It
helps you stand out in the crowd and allows companies to quickly hire high-quality
engineers like you. On attaining the certification, you will be certified to design, and
build cloud native applications for Kubernetes.

26

KodeKloud.com

You can read more about the Certification at cncf.io/certification/CKAD. As of today,
the exam costs 300 USD, with one FREE retake. This means that in case you don’t
manage to pass on the initial attempt, which I am sure you will, you have one more
attempt available for FREE within the next 12 months. The mode of delivery is Online.
Which means you can deliver the exam, anytime anywhere at the comfort of your
house. Since this is an online exam, an online proctor will be watching you at all
times. There are a set of requirements that need to be met with respect to the
environment, the room you are attending the exam from, the system you are using to
give the test, your network connectivity etc. All of these are described in detail in the
Candidate Handbook available on the certification web site.

27

KodeKloud.com

Unlike most of the Certification exams out there, the Kubernetes Certification is not a
multiple-choice exam. It is an online, performance-based exam that tests your hands-
on skills with the technology. This would mean that you don’t have to worry about
memorizing lots of different numbers in preparation for the exam. However, you need
to know how the technology works and how YOU can get it to work. You will be given
different tasks to complete in a set amount of time – which happens to be 2 hours for
this exam as per the exam guidelines. As far as I am concerned this is the BEST way
to test a person’s skills on a particular technology. I am not a big fan of multiple-
choice exams.

28

KodeKloud.com

You will, however, be able to refer to the Kubernetes official documentation pages at
all times during the exam. And in this course, we will walk through how to make best
use of the documentation site, so that you can easily locate the right information.
Well, I wish you good luck in preparing for and delivering the Kubernetes Certification
exam and I am sure with enough practice, you will pass with flying colors. So let us
begin.

29

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Kubernetes Architecture

Create and Configure Pods

In this lecture we start with the Core Concepts in Kubernetes - The Kubernetes
Architecture. The Kubernetes Application Developers certification exam does not
focus on setting up a Kubernetes cluster, it falls more under the Administrators
certification. So as long as you have a working cluster ready, you are good to proceed
with Application configuration. We have already gone through a high level overview
of Kubernetes Architecture in the Beginner’s course. And that is sufficient for this
certification. You simply need to know what the various components are and what
their responsibility is. We discuss these concepts in depth in the Kubernetes
Administrators course. If you are familiar with the Architecture already, feel free to
skip this lecture and head over to the next.

30

KodeKloud.com

Node

Nodes (Minions)

Kubernetes is configured on one or more Nodes. A node is a machine – physical or
virtual – on which kubernetes is installed. A node is a worker machine and this is
were containers are hosted.

It was also known as Minions in the past. So you might here these terms used inter
changeably.

But what if the node on which our application is running fails? Well, obviously our
application goes down. So you need to have more than one nodes for high availability
and scaling.

31

KodeKloud.com

Node

Nodes (Minions)

But what if the node on which our application is running fails? Well, obviously our
application goes down. So you need to have more than one nodes for high availability
and scaling.

32

KodeKloud.com

Cluster

NodeNode Node

A cluster is a set of nodes grouped together. This way even if one node fails you have
your application still accessible from the other nodes. Moreover having multiple
nodes helps in sharing load as well.

33

KodeKloud.com

Node

Master

Node NodeMaster

Now we have a cluster, but who is responsible for managing the cluster? Were is the
information about the members of the cluster stored? How are the nodes
monitored? When a node fails how do you move the workload of the failed node to
another worker node? That’s were the Master comes in. The master is another node
with Kubernetes installed in it, and is configured as a Master. The master watches
over the nodes in the cluster and is responsible for the actual orchestration of
containers on the worker nodes.

34

KodeKloud.com

Node

Architecture

Master

KUBE-API Server

ETCD

Scheduler

Controllers

Kubelet

Kube-proxy

When you install Kubernetes on a System, you are actually installing the following
components. An API Server. An ETCD service. A kubelet service. A Container Runtime,
Controllers and Schedulers.

The API server acts as the front-end for kubernetes. The users, management devices,
Command line interfaces all talk to the API server to interact with the kubernetes
cluster.

Next is the ETCD key store. ETCD is a distributed reliable key-value store used by
kubernetes to store all data used to manage the cluster. Think of it this way, when you
have multiple nodes and multiple masters in your cluster, etcd stores all that
information on all the nodes in the cluster in a distributed manner. ETCD is
responsible for implementing locks within the cluster to ensure there are no conflicts
between the Masters.

The scheduler is responsible for distributing work or containers across multiple
nodes. It looks for newly created containers and assigns them to Nodes.

35

The controllers are the brain behind orchestration. They are responsible for noticing
and responding when nodes, containers or endpoints goes down. The controllers
makes decisions to bring up new containers in such cases.

The container runtime is the underlying software that is used to run containers. In our
case it happens to be Docker.

And finally kubelet is the agent that runs on each node in the cluster. The agent is
responsible for making sure that the containers are running on the nodes as
expected.

An additional component on the Node is the kube-proxy. It takes care of networking
within Kubernetes.

Well, that is all that you really need to know about the architecture in the scope of
this certification.

35

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Kubernetes Architecture

Create and Configure Pods

… In this lecture we will discuss about PODs. We will first understand what PODs are
and then practice developing POD definition files. You will work with advanced POD
definition files and also troubleshoot issues with existing ones. This way you will get
enough hands-on practice.

36

KodeKloud.com

Assumptions

Docker Image Kubernetes Cluster

Before we head into understanding PODs, we would like to assume that the following
have been setup already. At this point, we assume that the application is already
developed and built into Docker Images and it is available on a Docker repository like
Docker hub or any other internal registry, so kubernetes can pull it down. We also
assume that the Kubernetes cluster has already been setup and is working. This could
be a single-node setup or a multi-node setup, doesn’t matter. All the services need to
be in a running state.

37

KodeKloud.com

Node

POD

Node

POD

Node

POD

POD

As we discussed before, with kubernetes our ultimate aim is to deploy our
application in the form of containers on a set of machines that are configured as
worker nodes in a cluster. However, kubernetes does not deploy containers directly
on the worker nodes. The containers are encapsulated into a Kubernetes object
known as PODs. A POD is a single instance of an application. A POD is the smallest
object, that you can create in kubernetes.

38

KodeKloud.com

Node

POD

Node

PODPOD

POD

Kubernetes Cluster

Here we see the simplest of simplest cases were you have a single node kubernetes
cluster with a single instance of your application running in a single docker container
encapsulated in a POD. What if the number of users accessing your application
increase and you need to scale your application? You need to add additional
instances of your web application to share the load. Now, were would you spin up
additional instances? Do we bring up a new container instance within the same
POD? No! We create a new POD altogether with a new instance of the same
application. As you can see we now have two instances of our web application
running on two separate PODs on the same kubernetes system or node.

What if the user base FURTHER increases and your current node has no sufficient
capacity? Well THEN you can always deploy additional PODs on a new node in the
cluster. You will have a new node added to the cluster to expand the cluster’s physical
capacity. <pause> SO, what I am trying to illustrate in this slide is that, PODs usually
have a one-to-one relationship with containers running your application. To scale UP
you create new PODs and to scale down you delete PODs. You do not add additional
containers to an existing POD to scale your application. <pause> Also, if you are
wondering how we implement all of this and how we achieve load balancing between
containers etc, we will get into all of that in a later lecture. For now we are ONLY

39

trying to understand the basic concepts.

39

KodeKloud.com

Multi-Container PODs

Node

POD

Helper
Containers

Networ
k

Now we just said that PODs usually have a one-to-one relationship with the
containers, but, are we restricted to having a single container in a single POD? No! A
single POD CAN have multiple containers, except for the fact that they are usually not
multiple containers of the same kind. As we discussed in the previous slide, if our
intention was to scale our application, then we would need to create additional
PODs. But sometimes you might have a scenario were you have a helper container,
that might be doing some kind of supporting task for our web application such as
processing a user entered data, processing a file uploaded by the user etc. and you
want these helper containers to live along side your application container. In that
case, you CAN have both of these containers part of the same POD, so that when a
new application container is created, the helper is also created and when it dies the
helper also dies since they are part of the same POD. The two containers can also
communicate with each other directly by referring to each other as ‘localhost’ since
they share the same network namespace. Plus they can easily share the same storage
space as well.

This is only an introduction to multi-container PODs. We have a more detailed section
coming up on the different types of multi-container PODs later in this course.

40

KodeKloud.com

YAML in Kubernetes

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

v1

Pod

name: myapp-pod

labels:

app: myapp

type: front-end

containers:

- name: nginx-container

image: nginx

kubectl create –f pod-definition.yml

String
String

Dictionary

Kind Version

POD v1

Service v1

ReplicaSet apps/v1

Deployment apps/v1

List/Array

1st Item in List

Kubernetes uses YAML files as input for the creation of objects such as PODs,
Replicas, Deployments, Services etc. All of these follow similar structure. If you are
not familiar with YAML language, refer to the beginners course were we learn YAML
language through some fun coding exercises section.

A kubernetes definition file always contains 4 top level fields. The apiVersion, kind,
metadata and spec. These are top level or root level properties. Think of them as
siblings, children of the same parent. These are all REQUIRED fields, so you MUST
have them in your configuration file.

Let us look at each one of them. The first one is the apiVersion. This is the version of
the kubernetes API we’re using to create the object. Depending on what we are
trying to create we must use the RIGHT apiVersion. For now since we are working on
PODs, we will set the apiVersion as v1. Few other possible values for this field are
apps/v1beta1, extensions/v1beta1 etc. We will see what these are for later in this
course.

Next is the kind. The kind refers to the type of object we are trying to create, which in
this case happens to be a POD. So we will set it as Pod. Some other possible values

41

here could be ReplicaSet or Deployment or Service, which is what you see in the kind
field in the table on the right.

The next is metadata. The metadata is data about the object like its name, labels etc.
As you can see unlike the first two were you specified a string value, this, is in the
form of a dictionary. So everything under metadata is intended to the right a little bit
and so names and labels are children of metadata. Under metadata, the name is a
string value – so you can name your POD myapp-pod - and the labels is a dictionary.
So labels is a dictionary within the metadata dictionary. And it can have any key and
value pairs as you wish. For now I have added a label app with the value myapp.
Similarly you could add other labels as you see fit which will help you identify these
objects at a later point in time. Say for example there are 100s of PODs running a
front-end application, and 100’s of them running a backend application or a database,
it will be DIFFICULT for you to group these PODs once they are deployed. If you label
them now as front-end, back-end or database, you will be able to filter the PODs
based on this label at a later point in time.

It’s IMPORTANT to note that under metadata, you can only specify name or labels or
anything else that kubernetes expects to be under metadata. You CANNOT add any
other property as you wish under this. However, under labels you CAN have any kind
of key or value pairs as you see fit. So its IMPORTANT to understand what each of
these parameters expect.

So far we have only mentioned the type and name of the object we need to create
which happens to be a POD with the name myapp-pod, but we haven’t really
specified the container or image we need in the pod. The last section in the
configuration file is the specification which is written as spec. Depending on the
object we are going to create, this is were we provide additional information to
kubernetes pertaining to that object. This is going to be different for different objects,
so its important to understand or refer to the documentation section to get the right
format for each. Since we are only creating a pod with a single container in it, it is
easy. Spec is a dictionary so add a property under it called containers, which is a list
or an array. The reason this property is a list is because the PODs can have multiple
containers within them as we learned in the lecture earlier. In this case though, we
will only add a single item in the list, since we plan to have only a single container in
the POD. The item in the list is a dictionary, so add a name and image property. The
value for image is nginx.

Once the file is created, run the command kubectl create -f followed by the file name
which is pod-definition.yml and kubernetes creates the pod.

41

So to summarize remember the 4 top level properties. apiVersion, kind, metadata
and spec. Then start by adding values to those depending on the object you are
creating.

41

KodeKloud.com

kubectl

kubectl run nginx

Node

POD

kubectl get pods

–-image nginx

Let us now look at how to deploy PODs. Earlier we learned about the kubectl run
command. What this command really does is it deploys a docker container by
creating a POD. So it first creates a POD automatically and deploys an instance of the
nginx docker image. But were does it get the application image from? For that you
need to specify the image name using the –-image parameter. The application image,
in this case the nginx image, is downloaded from the docker hub repository. Docker
hub as we discussed is a public repository were latest docker images of various
applications are stored. You could configure kubernetes to pull the image from the
public docker hub or a private repository within the organization.

Now that we have a POD created, how do we see the list of PODs available? The
kubectl get PODs command helps us see the list of pods in our cluster. In this case we
see the pod is in a ContainerCreating state and soon changes to a Running state when
it is actually running.

Also remember that we haven’t really talked about the concepts on how a user can
access the nginx web server. And so in the current state we haven’t made the web
server accessible to external users. You can access it internally from the Node though.
For now we will just see how to deploy a POD and in a later lecture once we learn

42

about networking and services we will get to know how to make this service
accessible to end users.

42

KodeKloud.com

Commands
> kubectl get pods

NAME READY STATUS RESTARTS AGE

myapp-pod 1/1 Running 0 20s

> kubectl describe pod myapp-pod

Name: myapp-pod
Namespace: default
Node: minikube/192.168.99.100
Start Time: Sat, 03 Mar 2018 14:26:14 +0800
Labels: app=myapp

name=myapp-pod
Annotations: <none>
Status: Running
IP: 10.244.0.24
Containers:
nginx:
Container ID: docker://830bb56c8c42a86b4bb70e9c1488fae1bc38663e4918b6c2f5a783e7688b8c9d
Image: nginx
Image ID: docker-pullable://nginx@sha256:4771d09578c7c6a65299e110b3ee1c0a2592f5ea2618d23e4ffe7a4cab1ce5de
Port: <none>
State: Running
Started: Sat, 03 Mar 2018 14:26:21 +0800

Ready: True
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-x95w7 (ro)

Conditions:
Type Status
Initialized True
Ready True
PodScheduled True

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 34s default-scheduler Successfully assigned myapp-pod to minikube
Normal SuccessfulMountVolume 33s kubelet, minikube MountVolume.SetUp succeeded for volume "default-token-x95w7"
Normal Pulling 33s kubelet, minikube pulling image "nginx"
Normal Pulled 27s kubelet, minikube Successfully pulled image "nginx"
Normal Created 27s kubelet, minikube Created container
Normal Started 27s kubelet, minikube Started container

Once we create the pod, how do you see it? Use the kubectl get pods command to
see a list of pods available. In this case its just one. To see detailed information about
the pod run the kubectl describe pod command. This will tell you information about
the POD, when it was created, what labels are assigned to it, what docker containers
are part of it and the events associated with that POD.

43

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743640

44

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Kubernetes Architecture

Create and Configure Pods

45

KodeKloud.com

46

COMMANDS
&

ARGUMENTS

46

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Command and Arguments

Taints & Tolerations

Node Selectors

Node Affinity

In this section we will talk about Command and Arguments in a Pod Definition. This is
not listed as a required topic in the certification curriculum, but I think its important
to explain it as it is a topic that is usually overlooked.

47

KodeKloud.com

docker run ubuntu

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
45aacca36850 ubuntu "/bin/bash" 43 seconds ago Exited (0) 41 seconds ago

docker ps

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

Let’s first refresh our memory on commands in containers and docker. We will then
translate this into PODs in the next lecture. Let’s start with a simple scenario. Say you
were to run a docker container from an Ubuntu image. When you run the “docker run
ubuntu” command, it runs an instance of Ubuntu image and exits immediately. If you
were to list the running containers you wouldn’t see the container running. If you list
all containers including those that are stopped, you will see that the new container
you ran is in an Exited state. Now why is that?

48

KodeKloud.com

Unlike Virtual Machines, containers are not meant to host an Operating System.
Containers are meant to run a specific task or process. Such as to host an instance of
a Web Server, or Application Server or a database or simply to carry out some kind of
computation or analysis. Once the task is complete the container exits. A container
only lives as long as the process inside it is alive. If the web service inside the
container is stopped or crashes the container exits.

49

KodeKloud.com

So who defines what process is run within the container? If you look at the
Dockerfile for the NGINX image, you will see an Instruction called CMD which stands
for command that defines the program that will be run within the container when it
starts. For the NGINX image it is the nginx command, for the mysql image it is the
mysqld command.

50

KodeKloud.com

What we tried to do earlier was to run a container with a plain Ubuntu Operating
System. Let us look at the Dockerfile for this image. You will see that it uses “bash”
as the default command. Now, bash is not really a process like a web server or
database. It is a shell that listens for inputs from a terminal. If it cannot find a
terminal it exits.

51

KodeKloud.com

??

When we ran the Ubuntu container earlier, Docker created a container from the
Ubuntu image, and launched the bash program. By default Docker does not attach a
terminal to a container when it is run. And so the bash program does not find a
terminal and so it exits. Since the process, that was started when the container was
created, finished, the container exits as well.

52

KodeKloud.com

docker run ubuntu [COMMAND]

docker run ubuntu sleep 5

5

So how do you specify a different command to start the container? One option is to
append a command to the docker run command and that way it overrides the default
command specified within the image. In this case I run the docker run ubuntu
command with the “sleep 5” command as the added option. This way when the
container starts it runs the sleep program, waits for 5 seconds and then exits.

53

KodeKloud.com

FROM Ubuntu

CMD sleep 5

CMD [“command”, “param1”]

CMD command param1

CMD [“sleep”, “5”]

CMD sleep 5

CMD [“sleep 5”]

docker build –t ubuntu-sleeper .

docker run ubuntu-sleeper

5

But how do you make that change permanent? Say you want the container to always
run the sleep command when it starts.

You would then create your own image from the base Ubuntu image and specify a
new command.

There are different ways of specifying the command. Either the command simply as
is in a shell form. Or in a JSON array format like this. But remember, when you specify
in a JSON array format, the first element in the array should be the executable. In this
case the sleep program. Do not specify the command and parameters together like
this. The first element should always be an executable.

So I now build by new image using the docker build command, and name it as
ubuntu-sleeper. I could now simply run the docker ubuntu sleeper command and get
the same results. It always sleeps for 5 seconds and exits.

54

KodeKloud.com

sleep: missing operand
Try 'sleep --help' for more information.

FROM Ubuntu

CMD sleep 5

docker run ubuntu-sleeper sleep 10

docker run ubuntu-sleeper 10

FROM Ubuntu

ENTRYPOINT [“sleep”]

Command at Startup: sleep 10

Command at Startup: sleep 10

docker run ubuntu-sleeper

Command at Startup: sleep

But what if I wish to change the number of seconds it sleeps. Currently it is
hardcoded to 5 seconds. As we learned before one option is to run the docker run
command with the new command appended to it. In this case sleep 10. And so the
command that will be run at startup will be sleep 10. But it doesn’t look very good.
The name of the image ubuntu-sleeper in itself implies that the container will sleep.
So we shouldn’t have to specify the sleep command again. Instead we would like it to
be something like this. Docker run ubuntu-sleeper 10. We only want to pass in the
number of seconds the container should sleep and the sleep command should be
invoked automatically.

And that is where the entrypoint instruction comes into play. The entrypoint
instruction is like the command instruction, as in you can specify the program that
will be run when the container starts. And whatever you specify on the command
line, in this case 10, will get appended to the entrypoint. So the command that will
be run when the container starts is sleep 10.

So that’s the difference between the two. In case of the CMD instruction the
command line parameters passed will get replaced entirely, whereas in case of
entrypoint the command line parameters will get appended.

55

Now, in the second case what if I run the ubuntu-sleeper without appending the
number of seconds? Then the command at startup will be just sleep and you get the
error that the operand is missing. So how do you add a default value as well?

55

KodeKloud.com

Command at Startup:

Command at Startup:

docker run ubuntu-sleeper

Command at Startup:

FROM Ubuntu

ENTRYPOINT [“sleep”]

CMD [“5”]

sleep

5

docker run ubuntu-sleeper 10

10

sleep

docker run --entrypoint sleep2.0 ubuntu-sleeper 10

Command at Startup: sleep2.0 10

That’s where you would use both Entrypoint as well as the CMD instruction. In this
case the command instruction will be appended to the entrypoint instruction. So at
startup, the command would be sleep 5, if you didn’t specify any parameters in the
command line. If you did, then that will override the command instruction. And
remember, for this to happen, you should always specify the entrypoint and
command instructions in a JSON format.

Finally, what if you really want to modify the entrypoint during run time? Say from
sleep to a hypothetical sleep2.0 command? Well in that case you can override it by
using the --entrypoint option in the docker run command. The final command at
startup would then be sleep2.0 10

56

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Command and Arguments

We will now look at Command and Arguments in a Kubernetes POD.

57

KodeKloud.com

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

kubectl create –f pod-definition.yml

v1

Pod

name: ubuntu-sleeper-pod

containers:

- name:

image:

docker run --name ubuntu-sleeper ubuntu-sleeper

ubuntu-sleeper

docker run --name ubuntu-sleeper ubuntu-sleeper 10

ubuntu-sleeper

args:[“10”]

In the previous lecture we created a simple docker image that sleeps for a given
number of seconds. We named it ubuntu-sleeper and we ran it using the docker
command docker run ubuntu-sleeper. By default it sleeps for 5 seconds, but you can
override it by passing a command line argument. We will now create a pod using this
image. We start with a blank pod definition template, input the name of the pod and
specify the image name. When the pod is created, it creates a container from the
specified image, and the container sleeps for 5 seconds before exiting.

Now, if you need the container to sleep for 10 seconds as in the second command,
how do you specify the additional argument in the pod-definition file? Anything that
is appended to the docker run command will go into the “args” property of the pod
definition file, in the form of an array like this.

58

KodeKloud.com

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

kubectl create –f pod-definition.yml

v1

Pod

name: ubuntu-sleeper-pod

containers:

- name:

image: ubuntu-sleeper

ubuntu-sleeper

args: [“10”]

FROM Ubuntu

ENTRYPOINT [“sleep”]

CMD [“5”]

docker run --name ubuntu-sleeper \
--entrypoint sleep2.0
ubuntu-sleeper 10

command: [“sleep2.0”]

Let us try to relate that to the Dockerfile we created earlier. The Dockerfile has an
Entrypoint as well as a CMD instruction specified. The entrypoint is the command
that is run at startup, and the CMD is the default parameter passed to the command.
With the args option in the pod-definition file we override the CMD instruction in the
Dockerfile. But what if you need to override the entrypoint? Say from sleep to a
hypothetical sleep2.0 command? In the docker world, we would run the docker run
command with the --entrypoint option set to the new command. The corresponding
entry in the pod definition file would be using a command field. The command field
corresponds to entrypoint instruction in the Dockerfile.

59

KodeKloud.com

FROM Ubuntu

ENTRYPOINT [“sleep”]

CMD [“5”]

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

v1

Pod

name: ubuntu-sleeper-pod

containers:

- name:

image: ubuntu-sleeper

ubuntu-sleeper

args:[“10”]

command:[“sleep2.0”]

So to summarize, there are two fields that correspond to two instructions in the
Dockerfile. The command overrides the entrypoint instruction and the args field
overrides the command instruction in the Dockerfile. Remember the command field
does not override the CMD instruction in the Dockerfile.

60

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743655

61

KodeKloud.com

References

https://kubernetes.io/docs/tasks/inject-data-application/define-command-
argument-container/

62

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

In this section we will talk about concepts around Configuration in Kubernetes. We
will start with ConfigMaps. First we will see what a configuration item is by using a
simple example of a web application and how it is set in Docker. And then we will see
how it is configured in Kubernetes. If you know about environment variables and how
they are set in Docker already, please skip the next lecture.

63

KodeKloud.com

64

ENVIRONMENT
VARIABLES

64

KodeKloud.com

import os

from flask import Flask

app = Flask(__name__)

…

…

color = "red"

@app.route("/")

def main():

print(color)

return render_template('hello.html', color=color)

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py

python app.py

Environment Variables

Let us start with a simple web application written in Python. This piece of code is
used to create a web application that displays a webpage with a background color.

65

KodeKloud.com

import os

from flask import Flask

app = Flask(__name__)

…

…

color = "red"

@app.route("/")

def main():

print(color)

return render_template('hello.html', color=color)

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py
Environment Variables

If you look closely into the application code, you will see a line that sets the
background color to red. Now, that works just fine. However, if you decide to change
the color in the future, you will have to change the application code. It is a best
practice to move such information out of the application code.

66

KodeKloud.com

import os

from flask import Flask

app = Flask(__name__)

…

…

color = "red"

@app.route("/")

def main():

print(color)

return render_template('hello.html', color=color)

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py

os.environ.get('APP_COLOR')

export APP_COLOR=blue; python app.py

Environment Variables

And into, say an environment variable called APP_COLOR. The next time you run the
application, set an environment variable called APP_COLOR to a desired value, and
the application now has a new color.

67

KodeKloud.com

docker run simple-webapp-color-e APP_COLOR=blue

ENV Variables in Docker

Once your application get’s packaged into a Docker image, you would then run it with
the docker run command followed by the name of the image. However, if you wish to
pass the environment variable as we did before, you would now use the docker run
command’s –e option to set an environment variable within the container.

68

KodeKloud.com

docker run simple-webapp-color-e APP_COLOR=blue

docker run -e APP_COLOR=green simple-webapp-color

docker run -e APP_COLOR=pink simple-webapp-color

ENV Variables in Docker

To deploy multiple containers with different colors, you would run the docker
command multiple times and set a different value for the environment variable each
time.

69

KodeKloud.com

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

env:

- name:

value:

APP_COLOR

pink

docker run -e APP_COLOR=pink simple-webapp-color

ENV Variables in Kubernetes

Let us now see how to pass in an environment variable in Kubernetes. Given a pod
definition file, which uses the same image as the docker command. To set an
environment variable, use the ENV property. ENV is an array. So every item under the
env property starts with a dash, indicating an item in the array. Each item has a name
and a value property. The name is the name of the environment variable made
available within the container and the value is its value.

70

KodeKloud.com

env:

- name:

value:

APP_COLOR

pink

ENV Value Types

Plain Key Value1

ConfigMap2

Secrets3

env:

- name: APP_COLOR

valueFrom:

env:

- name: APP_COLOR

valueFrom:

configMapKeyRef:

secretKeyRef:

What we just saw was a direct way of specifying the environment variables using a
plain key value pair format. However there are other ways of setting the environment
variables – such as using ConfigMaps and Secrets. The difference in this case is that
instead of specifying value, we say valueFrom. And then a specification of configMap
or secret. We will discuss about configMaps and secretKeys in the upcoming lectures.

71

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Hello, In this lecture we discuss how to work with configuration data in Kubernetes.

72

KodeKloud.com

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

env:

- name:

value:

- name:

value:

APP_COLOR

blue

ConfigMaps

APP_MODE

prod

ConfigMap

In the previous lecture we saw how to define environment variables in a pod
definition file. When you have a lot of pod definition files, it will become difficult to
manage the environment data stored within various files. We can take this
information out of the pod definition file and manage it centrally using Configuration
Maps.

ConfigMaps are used to pass configuration data in the form of key value pairs in
Kubernetes.

When a POD is created, inject the ConfigMap into the POD, so the key value pairs are
available as environment variables for the application hosted inside the container in
the POD.

So there are two phases involved in configuring ConfigMaps. First create the
ConfigMaps and second Inject them into the POD.

73

KodeKloud.com

APP_COLOR: blue

APP_MODE: prod

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

env:

- name:

value:

- name:

value:

ConfigMaps

ConfigMap

Create ConfigMap Inject into Pod

1 2

APP_MODE

APP_COLOR blue

prod

:
:

envFrom:

- configMapRef:

name: app-config

In the previous lecture we saw how to define environment variables in a pod
definition file. When you have a lot of pod definition files, it will become difficult to
manage the environment data stored within various files. We can take this
information out of the pod definition file and manage it centrally using Configuration
Maps.

ConfigMaps are used to pass configuration data in the form of key value pairs in
Kubernetes.

When a POD is created, inject the ConfigMap into the POD, so the key value pairs are
available as environment variables for the application hosted inside the container in
the POD.

So there are two phases involved in configuring ConfigMaps. First create the
ConfigMaps and second Inject them into the POD.

74

KodeKloud.com

Create ConfigMaps

APP_COLOR: blue

APP_MODE: prod

ConfigMap

Create ConfigMap

1

kubectl create configmap

kubectl create –f Declarative

Imperative

Just like any other Kubernetes objects, there are two ways of creating a ConfigMap.
The imperative way - without using a ConfigMap definition file and the Declarative
way by using a ConfigMap Definition file.

If you do not wish to create a configmap definition, you could simply use the kubectl
create configmap command and specify the required arguments. Let’s take a look at
that first.

With this method you can directly specify the key value pairs in the command line. To
create a configMap of the given values, run the kubectl create configmap command.

75

KodeKloud.com

Create ConfigMaps

APP_COLOR: blue

APP_MODE: prod

ConfigMap

Create ConfigMap

1

kubectl create configmapImperative

<config-name> --from-literal=<key>=<value>

kubectl create configmap \

app-config --from-literal=APP_COLOR=blue

--from-literal=APP_MOD=prod

\

kubectl create configmap

<config-name> --from-file=<path-to-file>

kubectl create configmap \

app-config --from-file=app_config.properties

The command is followed by the config name and the option –from-literal. The from
literal option is used to specify the key value pairs in the command itself. In this
example, we are creating a configmap by the name app-config, with a key value pair
APP_COLOR=blue. If you wish to add additional key value pairs, simply specify the
from literal options multiple times. However, this will get complicated when you have
too many configuration items.

Another way to input the configuration data is through a file. Use the –from-file
option to specify a path to the file that contains the required data. The data from this
file is read and stored under the name of the file

76

KodeKloud.com

Create ConfigMaps

APP_COLOR: blue

APP_MODE: prod

ConfigMap

Create ConfigMap

1

kubectl create –f Declarative

apiVersion:

kind:

metadata:

data:

config-map.yaml

v1

ConfigMap

name: app-config

APP_COLOR: blue

APP_MODE: prod

kubectl create –f config-map.yaml

Let us now look at the declarative approach. For this we create a definition file, just
like how we did for the pod. The file has apiVersion, kind, metadata and instead of
spec, here we have “data”. The apiVersion is v1, kind is ConfigMap. Under metadata
specify the name of the configmap. We will call it app-config. Under data add the
configuration data in a key-value format.

Run the kubectl create command and specify the configuration file name.

77

KodeKloud.com

Create ConfigMaps

APP_COLOR: blue

APP_MODE: prod

app-config

Create ConfigMap

1

port: 6379

rdb-compression: yes

redis-config

port: 3306

max_allowed_packet: 128M

mysql-config

So that creates the app-config config map with the values we specified. You can
create as many configmaps as you need in the same way for various different
purposes. Here I have one for my application, other for mysql and another one for
redis. So it is important to name the config maps appropriately as you will be using
these names later while associating it with PODs.

78

KodeKloud.com

View ConfigMaps

kubectl get configmaps

NAME DATA AGE
app-config 2 3s

kubectl describe configmaps

Name: app-config
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
APP_COLOR:

blue
APP_MODE:

prod
Events: <none>

To view the configmaps, run the kubectl get configmaps command. This lists the
newly created configmap named app-config. The describe configmaps command lists
the configuration data as well under the Data section.

79

KodeKloud.com

ConfigMap in Pods

Inject into Pod

2

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

envFrom:

- configMapRef:

name:

apiVersion:

kind:

metadata:

data:

config-map.yaml

v1

ConfigMap

name: app-config

APP_COLOR: blue

APP_MODE: prod

app-config

kubectl create –f pod-definition.yaml

Now that we have the configmap created let us proceed with Step 2 – Configuring it
with a POD. Here I have a simple pod definition file that runs my application simple
web application.

To inject an environment variable, add a new property to the container called
envFrom. The envFrom property is a list, so we can pass as many environment
variables as required. Each item in the list corresponds to a configMap item. Specify
the name of the configmap we created earlier. This is how we inject a specific
configmap from the ones we created before. Creating the pod definition file now
creates a web application with a blue background.

80

KodeKloud.com

ConfigMap in Pods

envFrom:

- configMapRef:

name: app-config

env:

- name: APP_COLOR

valueFrom:

configMapKeyRef:

name: app-config

key: APP_COLOR

volumes:

- name: app-config-volume

configMap:

name: app-config

SINGLE ENV

VOLUME

ENV

What we just saw was using configMaps to inject environment variables. There are
other ways to inject configuration data into PODs. You can inject a single
environment variable or inject the whole configuration data as files in a volume.

81

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743656

82

KodeKloud.com

References

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
configmap/

https://kubernetes.io/docs/tutorials/configuration/

83

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

The next section on Configuration covers topics like ConfigMaps, SecurityContexts,
Resource Requirements, secrets and service accounts.

84

KodeKloud.com

85

Kubernetes
Secrets

85

KodeKloud.com

Web-MySQL Application

import os

from flask import Flask

app = Flask(__name__)

@app.route("/")

def main():

mysql.connector.connect(host=‘mysql', database='mysql’,

user='root', password=‘paswrd')

return render_template('hello.html', color=fetchcolor())

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py

Here we have a simple python web application that connects to a mysql database.
On success the application displays a successful message.

86

KodeKloud.com

import os

from flask import Flask

app = Flask(__name__)

@app.route("/")

def main():

mysql.connector.connect(host=‘mysql', database='mysql’,

user='root', password=‘paswrd')

return render_template('hello.html', color=fetchcolor())

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py

Web-MySQL Application

If you look closely into the code, you will see the hostname, username and password
hardcoded. This is of-course not a good idea.

87

KodeKloud.com

import os

from flask import Flask

app = Flask(__name__)

@app.route("/")

def main():

mysql.connector.connect(host=‘mysql', database='mysql’,

user='root', password=‘paswrd')

return render_template('hello.html', color=fetchcolor())

if __name__ == "__main__":

app.run(host="0.0.0.0", port="8080")

app.py

apiVersion: v1

kind: ConfigMap

metadata:

name: app-config

data:

config-map.yaml

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Web-MySQL Application

As we learned in the previous lecture, one option would be to move these values into
a configMap. The configMap stores configuration data in plain text, so while it would
be OK to move the hostname and username into a configMap, it is definitely not the
right place to store a password.

88

KodeKloud.com

Secret

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Secret

POD

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Environment Variable

Create Secret Inject into Pod

1 2

DB_Host: bXlzcWw=

DB_User: cm9vdA==

DB_Password: cGFzd3Jk

This is were secrets come in. Secrets are used to store sensitive information, like
passwords or keys. They are similar to configMaps, except that they are stored in an
encoded or hashed format. As with configMaps, there are two steps involved in
working with Secrets. First, create the secret and second inject it into Pod.

89

KodeKloud.com

Create Secrets

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Secret

Create Secret

1

kubectl create secret generic

kubectl create –f Declarative

Imperative

There are two ways of creating a secret. The imperative way - without using a Secret
definition file and the Declarative way by using a Secret Definition file.

With the Imperative method you can directly specify the key value pairs in the
command line itself. To create a secret of the given values, run the kubectl create
secret generic command.

90

KodeKloud.com

Create Secrets

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Secret

Create Secret

1

kubectl create secret genericImperative

<secret-name> --from-literal=<key>=<value>

kubectl create secret generic \

app-secret --from-literal=DB_Host=mysql

--from-literal=DB_User=root

\

kubectl create secret generic

<secret-name> --from-file=<path-to-file>

kubectl create secret generic \

app-secret --from-file=app_secret.properties

--from-literal=DB_Password=paswrd

The command is followed by the secret name and the option –from-literal. The from
literal option is used to specify the key value pairs in the command itself. In this
example, we are creating a secret by the name app-secret, with a key value pair
DB_Host=mysql. If you wish to add additional key value pairs, simply specify the from
literal options multiple times.

However, this could get complicated when you have too many secrets to pass in.
Another way to input the secret data is through a file. Use the –from-file option to
specify a path to the file that contains the required data. The data from this file is
read and stored under the name of the file.

91

KodeKloud.com

Create Secrets

Create Secret

1

kubectl create –f Declarative

apiVersion:

kind:

metadata:

data:

secret-data.yaml

v1

Secret

name: app-secret

DB_Host: mysql

DB_User: root

DB_Password: paswrd

kubectl create –f secret-data.yaml

DB_Host: mysql

DB_User: root

DB_Password: paswrd

Secret

DB_Host: bXlzcWw=

DB_User: cm9vdA==

DB_Password: cGFzd3Jk

Let us now look at the declarative approach. For this we create a definition file, just
like how we did for the ConfigMap. The file has apiVersion, kind, metadata and data.
The apiVersion is v1, kind is Secret. Under metadata specify the name of the secret.
We will call it app-secret. Under data add the secret data in a key-value format.

However, one thing we discussed about secrets was that they are used to store
sensitive data and are stored in an encoded format. Here we have specified the data
in plain text, which is not very safe. So, while creating a secret with the declarative
approach, you must specify the secret values in a hashed format.

So you must specify the data in an encoded form like this. But how do you convert
the data from plain text to an encoded format?

92

KodeKloud.com

Encode Secrets

Create Secret

1

kubectl create –f Declarative

apiVersion:

kind:

metadata:

data:

secret-data.yaml

v1

Secret

name: app-secret

DB_Host: mysql

DB_User: root

DB_Password: paswrd

kubectl create –f secret-data.yaml

Secret

DB_Host: bXlzcWw=

DB_User: cm9vdA==

DB_Password: cGFzd3Jk

DB_Host: mysql

DB_User: root

DB_Password: paswrd

echo –n ‘mysql’ | base64

bXlzcWw=

echo –n ‘root’ | base64

cm9vdA==

echo –n ‘paswrd’ | base64

cGFzd3Jk

But how do you convert the data from plain text to an encoded format? On a linux
host run the command echo –n followed by the text you are trying to convert, which
is mysql in this case and pipe that to the base64 utility.

93

KodeKloud.com

View Secrets

kubectl get secrets

NAME TYPE DATA AGE
app-secret Opaque 3 10m
default-token-mvtkv kubernetes.io/service-account-token 3 2h

kubectl describe secrets

Name: app-secret
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
DB_Host: 10 bytes
DB_Password: 6 bytes
DB_User: 4 bytes

kubectl get secret app-secret –o yaml

apiVersion: v1
data:

DB_Host: bXlzcWw=
DB_Password: cGFzd3Jk
DB_User: cm9vdA==

kind: Secret
metadata:

creationTimestamp: 2018-10-18T10:01:12Z
labels:

name: app-secret
name: app-secret
namespace: default

uid: be96e989-d2bc-11e8-a545-080027931072
type: Opaque

To view secrets run the kubectl get secrets command. This lists the newly created
secret along with another secret previously created by kubernetes for its internal
purposes.

To view more information on the newly created secret, run the kubectl describe
secret command. This shows the attributes in the secret, but hides the value
themselves.

To view the values as well, run the kubectl get secret command with the output
displayed in a YAML format using the –o option. You can now see the hashed values
as well.

94

KodeKloud.com

Decode Secrets

Create Secret

1

kubectl create –f Declarative

apiVersion:

kind:

metadata:

data:

secret-data.yaml

v1

Secret

name: app-secret

DB_Host: mysql

DB_User: root

DB_Password: paswrd

kubectl create –f secret-data.yaml

Secret

DB_Host: bXlzcWw=

DB_User: cm9vdA==

DB_Password: cGFzd3Jk

DB_Host: mysql

DB_User: root

DB_Password: paswrd

echo –n ‘bXlzcWw=’ | base64 --decode

mysql

echo –n ‘cm9vdA==’ | base64 --decode

root

echo –n ‘cGFzd3Jk’ | base64 --decode

paswrd

How do you decode the hashed values? Use the same base64 command you used in
linux to encode it, but this time add a decode option to it.

95

KodeKloud.com

Secrets in Pods

Inject into Pod

2

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

envFrom:

- secretRef:

name:

apiVersion:

kind:

metadata:

data:

secret-data.yaml

v1

Secret

name: app-secret

DB_Host: bXlzcWw=

DB_User: cm9vdA==

DB_Password: cGFzd3Jk

app-secret

kubectl create –f pod-definition.yaml

Now that we have the secret created let us proceed with Step 2 – Configuring it with
a POD. Here I have a simple pod definition file that runs my application.

To inject an environment variable, add a new property to the container called
envFrom. The envFrom property is a list, so we can pass as many environment
variables as required. Each item in the list corresponds to a Secret item. Specify the
name of the secret we created earlier. Creating the POD definition file now makes the
data in the secret available as environment variables for the application.

96

KodeKloud.com

Secrets in Pods

envFrom:

- secretRef:

name: app-config

env:

- name: DB_Password

valueFrom:

secretKeyRef:

name: app-secret

key: DB_Password

volumes:

- name: app-secret-volume

secret:

secretName: app-secret

SINGLE ENV

VOLUME

ENV

What we just saw was injecting secrets as environment variables into the PODs.
There are other ways to inject secret into PODs. You can inject as single environment
variables or inject the whole secret as files in a volume.

97

KodeKloud.com

Inside the Container

Secrets in Pods as Volumes
volumes:

- name: app-secret-volume

secret:

secretName: app-secret

VOLUME

ls /opt/app-secret-volumes

DB_Host DB_Password DB_User

cat /opt/app-secret-volumes/DB_Password

paswrd

If you were to mount the secret as a volume in the Pod, each attribute in the secret is
created as a file with the value of the secret as its content. In this case, since we have
3 attributes in our secret, 3 files are created. And if we look at the contents of the
DB_password file, we see the password inside it. That’s it for this lecture, head over
to the coding exercises and practice working with secrets.

98

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743657

99

KodeKloud.com

References

https://kubernetes.io/docs/concepts/configuration/secret/

https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-
secure/

100

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Hello and welcome to this lecture. In this lecture we will talk about Security Contexts
in Kubernetes. But before we get into that, it is important to have some knowledge
about Security in Docker. If you are familiar with Security in Docker, feel free to skip
this lecture and head over to the next.

101

KodeKloud.com

102

Security in
Docker

Hello and welcome to this lecture. In this lecture we will talk about Security Contexts
in Kubernetes. But before we get into that, it is important to have some knowledge
about Security in Docker. If you are familiar with Security in Docker, feel free to skip
this lecture and head over to the next.

102

KodeKloud.com

Namespace

Namespace

Security

docker run ubuntu sleep 3600

Host

In this lecture we will look at the various concepts related to security in Docker. Let us
start with a host with Docker installed on it. This host has a set of its own processes
running such as a number of operating system processes, the docker daemon itself,
the SSH server etc.

We will now run an Ubuntu docker container that runs a process that sleeps for an
hour.

We have learned that unlike virtual machines containers are not completely isolated
from their host. Containers and the hosts share the same kernel. Containers are
isolated using namespaces in Linux. The host has a namespace and the containers
have their own namespace. All the processes run by the containers are in fact run on
the host itself, but in their own namespaces.

103

KodeKloud.com

Namespace

Security

Container

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 4528 828 ? Ss 03:06 0:00 sleep 3600

As far as the docker container is concerned, it is in its own namespace and it can see
its own processes only, cannot see anything outside of it or in any other namespace.
So when you list the processes from within the docker container you see the sleep
process with a process ID of 1.

104

KodeKloud.com

Security
ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
project 3720 0.1 0.1 95500 4916 ? R 06:06 0:00 sshd: project@pts/0
project 3725 0.0 0.1 95196 4132 ? S 06:06 0:00 sshd: project@notty
project 3727 0.2 0.1 21352 5340 pts/0 Ss 06:06 0:00 -bash
root 3802 0.0 0.0 8924 3616 ? Sl 06:06 0:00 docker-containerd-
shim -namespace m
root 3816 1.0 0.0 4528 828 ? Ss 06:06 0:00 sleep 3600

Namespace

Host

For the docker host, all processes of its own as well as those in the child namespaces
are visible as just another process in the system. So wen you list the processes on the
host you see a list of processes including the sleep command, but with a different
process ID. This is because the processes can have different process IDs in different
namespaces and that’s how Docker isolates containers within a system. So that’s
process isolation.

105

KodeKloud.com

Security - Users

Namespace

Namespace

Host

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
project 3720 0.1 0.1 95500 4916 ? R 06:06 0:00 sshd: project@pts/0
project 3725 0.0 0.1 95196 4132 ? S 06:06 0:00 sshd: project@notty
project 3727 0.2 0.1 21352 5340 pts/0 Ss 06:06 0:00 -bash
root 3802 0.0 0.0 8924 3616 ? Sl 06:06 0:00 docker-containerd-
shim -namespace m
root 3816 1.0 0.0 4528 828 ? Ss 06:06 0:00 sleep 3600

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 4528 828 ? Ss 03:06 0:00 sleep 3600

docker run --user=1001 ubuntu sleep 3600

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
1001 1 0.0 0.0 4528 828 ? Ss 03:06 0:00 sleep 3600

Let us now look at users in context of security. The docker host has a set of users, a
root user as well as a number of non-root users. By default docker runs processes
within containers as the root user. This can be seen in the output of the commands
we ran earlier. Both within the container and outside the container on the host, the
process is run as the root user. Now if you do not want the process within the
container to run as the root user, you may set the user using the user option with the
docker run command and specify the new user ID. You will see that the process now
runs with the new user id.

106

KodeKloud.com

Security - Users

Namespace

Namespace

Host

FROM ubuntu

USER 1001

Dockerfile

docker build –t my-ubuntu-image .

docker run my-ubuntu-image sleep 3600

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
1001 1 0.0 0.0 4528 828 ? Ss 03:06 0:00 sleep 3600

Another way to enforce user security is to have this defined in the Docker image itself
at the time of creation. For example, we will use the default ubuntu image and set
the user ID to 1000 using the USER instruction. Then build the custom image. We
can now run this image using without specifying the user ID and the process will be
run with the user id 1000.

107

KodeKloud.com

Security - Users

Namespace

Namespace

Host

Let us take a step back. What happens when you run containers as the root user? Is
the root user within the container the same as the root user on the host? Can the
process inside the container do anything that the root user can do on the system? If
so isn’t that dangerous? Well, docker implements a set of security features that limits
the abilities of the root user within the container. So the root user within the
container isn’t really like the root user on the host.

108

KodeKloud.com

Linux Capabilities

/usr/include/linux/capability.h

CHOWN DAC KILL

SETGID SETUID NET_BIND

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE /usr/include/linux/capability.h

NET_RAW

SETFCAP SETPCAP

SYS_CHROOT

AUDIT_WRITE

MAC_ADMIN

Docker uses Linux Capabilities to implement this. As we all know the root user is the
most powerful user on a system. The root user can literally do anything. And so does
a process run by the root user. It has unrestricted access to the system. From
modifying files and permissions on files, Access Control, creating or killing processes,
setting group id or user ID, performing network related operations such as binding to
network ports, broadcasting on a network, controlling network ports; system related
operations like rebooting the host, manipulating system clock and many more. All of
these are the different capabilities on a Linux system and you can see a full list at this
location. You can now control and limit what capabilities are made available to a
process.

109

KodeKloud.com

Linux Capabilities

CHOWN DAC KILL

SETGID SETUID NET_BIND NET_RAW

SETFCAP SETPCAP

SYS_CHROOT

AUDIT_WRITE

docker run ubuntu

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

MAC_ADMIN

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

MAC_ADMIN

By default Docker runs a container with a limited set of capabilities. And so the
processes running within the container do not have the privileges to say, reboot the
host or perform operations that can disrupt the host or other containers running on
the same host. In case you wish to override this behavior and enable all privileges to
the container use the privileged flag.

110

KodeKloud.com

Linux Capabilities

CHOWN DAC KILL

SETGID SETUID NET_BIND

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

NET_RAW

SETFCAP SETPCAP

SYS_CHROOT

AUDIT_WRITE

MAC_ADMIN

docker run ubuntu--cap-add MAC_ADMIN

MAC_ADMIN

If you wish to override this behavior and provide additional privileges than what is
available use the cap-add option in the docker run command.

111

KodeKloud.com

Linux Capabilities

CHOWN DAC KILL

SETGID SETUID NET_BIND

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

NET_RAW

SETFCAP SETPCAP

SYS_CHROOT

AUDIT_WRITE

MAC_ADMIN

docker run ubuntu--cap-drop KILL

MAC_ADMIN

KILL

Similarly you can drop privileges as well using the cap drop option.

112

KodeKloud.com

Linux Capabilities

CHOWN DAC KILL

SETGID SETUID NET_BIND

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

NET_RAW

SETFCAP SETPCAP

SYS_CHROOT

AUDIT_WRITE

MAC_ADMIN

docker run ubuntu--privileged

MAC_ADMIN

KILL

BROADCAST NET_ADMIN SYS_ADMIN

MANY MORE

Or in case you wish to run the container with all privileges enabled, use the
privileged flag. Well that’s it on Docker Security for now. I will see you in the next
lecture.

113

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Hello and welcome to this lecture on Security Contexts in Kubernetes. My name is
Mumshad Mannambeth and we are going through the Certified Kubernetes
Applications Developer Course.

114

KodeKloud.com

115

Kubernetes
Security
Contexts

115

KodeKloud.com

Container Security

docker run --user=1001 ubuntu sleep 3600

docker run ubuntu--cap-add MAC_ADMIN

MAC_ADMIN

As we saw in the previous lecture, when you run a Docker Container you have the
option to define a set of security standards, such as the ID of the user used to run the
container, the Linux capabilities that can be added or removed from the container
etc. These can be configured in Kubernetes as well.

116

KodeKloud.com

Kubernetes Security

MAC_ADMIN

As you know already, in Kubernetes containers are encapsulated in PODs. You may
chose to configure the security settings at a container level….

117

KodeKloud.com

Kubernetes Security

MAC_ADMIN

MAC_ADMINMAC_ADMIN

… or at a POD level. If you configure it at a POD level, the settings will carry over to
all the containers within the POD. If you configure it at both the POD and the
Container, the settings on the container will override the settings on the POD.

118

KodeKloud.com

Security Context

MAC_ADMIN

apiVersion: v1

kind: Pod

metadata:

name: web-pod

spec:

securityContext:

runAsUser: 1000

containers:

- name: ubuntu

image: ubuntu

command: ["sleep", "3600"]

Let us start with a POD definition file. This pod runs an ubuntu image with the sleep
command. To configure security context on the container, add a field called
securityContext under the spec section of the pod. Use the runAsUser option to set
the user ID for the POD.

119

KodeKloud.com

Security Context

MAC_ADMIN

apiVersion: v1

kind: Pod

metadata:

name: web-pod

spec:

securityContext:

runAsUser: 1000

containers:

- name: ubuntu

image: ubuntu

command: ["sleep", "3600"]

capabilities:

add: ["MAC_ADMIN"]

To set the same configuration on the container level, move the whole section under
the container specification like this.

To add capabilities use the capabilities option and specify a list of capabilities to add
to the POD.

Well that’s all on Security Contexts. Head over to the coding exercises section and
practice viewing, configuring and troubleshooting issues related to Security contexts
in Kubernetes. That’s it for now and I will see you in the next lecture.

120

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743658

121

KodeKloud.com

References
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

https://kubernetes.io/blog/2016/08/security-best-practices-kubernetes-deployment/

122

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

Hello and welcome to this lecture. In this lecture we will talk about Service Accounts
in Kubernetes.

123

KodeKloud.com

124

SERVICE
ACCOUNTS

The concept of service accounts is linked to other security related concepts in
kubernetes such as Authentication, Authorization, Role based access controls etc.

124

KodeKloud.com

Certified Kubernetes
Application Developer

(CKAD)

Certified Kubernetes
Administrator

(CKA)

However, as part of the Kubernetes for the Application Developers exam curriculum,
you only need to know how to work with Service Accounts. We have detailed
sections covering other concepts in security in the Kubernetes Administrators course.

125

KodeKloud.com

User Service

Admin Developer
Prometheus Jenkins

So there are two types of accounts in Kubernetes. A user account and a service
account. As you might already know, the user account is used by humans. And
service accounts are used by machines. A user account could be for an administrator
accessing the cluster to perform administrative tasks, a developer accessing the
cluster to deploy applications etc. A service account, could be an account used by an
application to interact with the kubernetes cluster. For example a monitoring
application like Prometheus uses a service account to poll the kubernetes API for
performance metrics. An automated build tool like Jenkins uses service accounts to
deploy applications on the kubernetes cluster.

126

KodeKloud.com

Kubernetes Cluster

kube-api

Let’s take an example. I have built a simple kubernetes dashboard application
named, my-kubernetes-dashboard. It’s a simple application built in Python and all
that it does when deployed is retrieve the list of PODs on a kubernetes cluster by
sending a request to the kubernetes API and display it on a web page. In order for my
application to query the kubernetes API, it has to be authenticated. For that we use
a service account.

127

KodeKloud.com

kubectl create serviceaccount dashboard-sa

serviceaccount “dashboard-sa” created

kubectl get serviceaccount

NAME SECRETS AGE
default 1 218d
dashboard-sa 1 4d

kubectl describe serviceaccount dashboard-sa

Name: dashboard-sa
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: dashboard-sa-token-kbbdm
Tokens: dashboard-sa-token-kbbdm
Events: <none>

To create a service account run the command kubectl create service account
followed by the account name, which is dashboard-sa in this case. To view the
service accounts run the kubectl get serviceaccount command. This will list all the
service accounts.

When the service account is created, it also creates a token automatically. The
service account token is what must be used by the external application while
authenticating to the Kubernetes API. The token, however, is stored as a secret
object. In this case its named dashboard-sa-token-kbbdm.

128

KodeKloud.com

kubectl describe serviceaccount dashboard-sa

Name: dashboard-sa
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: dashboard-sa-token-kbbdm
Tokens: dashboard-sa-token-kbbdm
Events: <none>

Secret

token:

kubectl describe secret dashboard-sa-token-kbbdm

Name: dashboard-sa-token-kbbdm
Namespace: default
Labels: <none>

Type: kubernetes.io/service-account-token

Data
====
ca.crt: 1025 bytes
namespace: 7 bytes
token:
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL
3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3V
udC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3

eyJhbGciOiJSUzI1NiIsImtp

ZCI6IiJ9.eyJpc3MiOiJrdWJ

lcm5ldGVzL3NlcnZpY2VhY2N

vdW50Iiwia3ViZXJuZXRlcy5

pby9zZXJ2aWNlYWNjb3Vud….

So when a service account is created, it first creates the service account object and
then generates a token for the service account. It then creates a secret object and
stores that token inside the secret object. The secret object is then linked to the
service account. To view the token, view the secret object by running the command
kubectl describe secret.

129

KodeKloud.com

Secret

token:

eyJhbGciOiJSUzI1NiIsImtp

ZCI6IiJ9.eyJpc3MiOiJrdWJ

lcm5ldGVzL3NlcnZpY2VhY2N

vdW50Iiwia3ViZXJuZXRlcy5

pby9zZXJ2aWNlYWNjb3Vud….

curl https://192.168.56.70:6443/api –insecure
--header “Authorization: Bearer ”

eyJhbGciOiJSUzI1NiIsImtp

ZCI6IiJ9.eyJpc3MiOiJrdWJ

lcm5ldGVzL3NlcnZpY2VhY2N

vdW50Iiwia3ViZXJuZXRlcy5

pby9zZXJ2aWNlYWNjb3Vud….

eyJhbG…

eyJhbGciOiJSUzI1NiIsImtp

ZCI6IiJ9.eyJpc3MiOiJrdWJ

lcm5ldGVzL3NlcnZpY2VhY2N

vdW50Iiwia3ViZXJuZXRlcy5

pby9zZXJ2aWNlYWNjb3Vud….

This token can then be used as an authentication bearer token while making a rest
call to the kubernetes API. For example in this simple example using curl you could
provide the bearer token as an Authorization header while making a rest call to the
kubernetes API.

In case of my custom dashboard application, copy and paste the token into the
tokens field to authenticate the dashboard application.

130

KodeKloud.com

POD

So, that’s how you create a new service account and use it. You can create a service
account, assign the right permissions using Role based access control mechanisms
(which is out of scope for this course) and export your service account tokens and
use it to configure your third party application to authenticate to the kubernetes API.
But what if your third party application is hosted on the kubernetes cluster itself. For
example, we can have our custom-kubernetes-dashboard or the Prometheus
application used to monitor kubernetes, deployed on the kubernetes cluster itself.

131

KodeKloud.com

POD

In that case, this whole process of exporting the service account token and
configuring the third party application to use it can be made simple by automatically
mounting the service token secret as a volume inside the POD hosting the third party
application. That way the token to access the kubernetes API is already placed inside
the POD and can be easily read by the application.

132

KodeKloud.com

kubectl get serviceaccount

NAME SECRETS AGE
default 1 218d
dashboard-sa 1 4d

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

v1

Pod

name: my-kubernetes-dashboard

containers:

- name: my-kubernetes-dashboard

image: my-kubernetes-dashboard

kubectl describe pod my-kubernetes-dashboard

Name: my-kubernetes-dashboard
Namespace: default
Annotations: <none>
Status: Running
IP: 10.244.0.15
Containers:
nginx:
Image: my-kubernetes-dashboard

Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-j4hkv (ro)

Conditions:
Type Status

Volumes:
default-token-j4hkv:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-j4hkv
Optional: false

If you go back and look at the list of service accounts, you will see that there is a
default service account that exists already. For every namespace in kubernetes a
service account named default is automatically created. Each namespace has its own
default service account.

Whenever a POD is created the default service account and its token are
automatically mounted to that POD as a volume mount. For example, we have a
simple pod definition file that creates a POD using my custom kubernetes
dashboard image. We haven’t specified any secrets or volume mounts. However
when the pod is created, if you look at the details of the pod, by running the kubectl
describe pod command, you see that a volume is automatically created from the
secret named default-token-j4hkv, which is in fact the secret containing the token for
the default service account. The secret token is mounted at location
/var/run/secrets/kubernetes.io/serviceaccount inside the pod. So from inside the pod
if you run the ls command

133

KodeKloud.com

kubectl describe pod my-kubernetes-dashboard

Name: my-kubernetes-dashboard
Namespace: default
Annotations: <none>
Status: Running
IP: 10.244.0.15
Containers:
nginx:
Image: my-kubernetes-dashboard

Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-j4hkv (ro)

Conditions:
Type Status

Volumes:
default-token-j4hkv:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-j4hkv
Optional: false

kubectl exec -it my-kubernetes-dashboard ls /var/run/secrets/kubernetes.io/serviceaccount

ca.crt namespace token

kubectl exec -it my-kubernetes-dashboard cat /var/run/secrets/kubernetes.io/serviceaccount/token

eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3V
udC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImRlZmF1bHQtdG9rZW4tajRoa3Y
iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGVmYXVsdCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWF
jY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjcxZGM4YWExLTU2MGMtMTFlOC04YmI0LTA4MDAyNzkzMTA3MiIsInN1YiI6InN5c3RlbTpzZXJ2aWN

If you list the contents of the directory inside the pod, you will see the secret
mounted as 3 separate files. The one with the actual token is the file named token. If
you list the contents of that file you will see the token to be used for accessing the
kubernetes API. Now remember that the default service account is very much
restricted. It only has permission to run basic kubernetes API queries.

134

KodeKloud.com

kubectl get serviceaccount

NAME SECRETS AGE
default 1 218d
dashboard-sa 1 4d

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

v1

Pod

name: my-kubernetes-dashboard

containers:

- name: my-kubernetes-dashboard

image: my-kubernetes-dashboard

serviceAccount: dashboard-sa
kubectl describe pod my-kubernetes-dashboard

Name: my-kubernetes-dashboard
Namespace: default
Annotations: <none>
Status: Running
IP: 10.244.0.15
Containers:
nginx:
Image: my-kubernetes-dashboard

Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from dashboard-sa-token-kbbdm (ro)

Conditions:
Type Status

Volumes:
dashboard-sa-token-kbbdm:
Type: Secret (a volume populated by a Secret)
SecretName: dashboard-sa-token-kbbdm
Optional: false

If you’d like to use a different serviceAccount, such as the ones we just created,
modify the pod definition file to include a serviceAccount field and specify the name
of the new service account. Remember, you cannot edit the service account of an
existing pod, so you must delete and re-create the pod. However in case of a
deployment, you will be able to edit the serviceAccount, as any changes to the pod
definition will automatically trigger a new roll-out for the deployment. So the
deployment will take care of deleting and re-creating new pods with the right service
account. When you look at the pod details now, you see that the new service
account is being used.

135

KodeKloud.com

apiVersion:

kind:

metadata:

spec:

pod-definition.yml

v1

Pod

name: my-kubernetes-dashboard

automountServiceAccountToken: false

containers:

- name: my-kubernetes-dashboard

image: my-kubernetes-dashboard

So remember, kubernetes automatically mounts the default service account if you
haven’t explicitly specified any. You may choose not to mount a service account
automatically by setting the automountServiceAccountToken field to false in the POD
spec section.

Well that’s it for this lecture. Head over to the practice exercises section and practice
working with service accounts. We will configure the custom kubernetes dashboard
with the right service account.

136

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/8598237

137

KodeKloud.com

References
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/

138

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

ConfigMaps

SecurityContexts

Resource Requirements

Secrets

ServiceAccounts

The next section on Configuration covers topics like ConfigMaps, SecurityContexts,
Resource Requirements, secrets and service accounts.

139

KodeKloud.com

140

Resource
Requirements

140

KodeKloud.com

CPU MEM DISK CPU MEM DISK CPU MEM DISK

Let us look at a 3 Node Kubernetes cluster. Each node has a set of CPU, Memory and
Disk resources available. Every POD consumes a set of resources. In this case 2 CPUs ,
one Memory and some disk space. Whenever a POD is placed on a Node, it
consumes resources available to that node.

141

KodeKloud.com

CPU MEM DISK CPU MEM DISK CPU MEM DISK

As we have discussed before, it is the kubernetes scheduler that decides which Node
a POD goes to. The scheduler takes into consideration, the amount of resources
required by a POD and those available on the Nodes. In this case, the scheduler
schedules a new POD on Node 2.

142

KodeKloud.com

CPU MEM DISK CPU MEM DISK CPU

If the node has no sufficient resources, the scheduler avoids placing the POD on that
node…

143

KodeKloud.com

CPU MEM DISK CPU MEM DISK CPU

.. Instead places the POD on one were sufficient resources are available. Some of the
related topics such as scaling and auto-scaling PODs and Nodes in the cluster and
how the scheduler itself works are out of scope for this course and the Kubernetes
Application Developer certification. These are discussed in much more detail in the
Kubernetes Administrators course. In this course we focus on setting resource
requirements for PODs from an application developer’s viewpoint.

144

KodeKloud.com

CPU MEM DISK CPU MEM DISK CPU

NAME READY STATUS RESTARTS AGE
Nginx 0/1 Pending 0 7m

Events:
Reason Message
------ -------
FailedScheduling No nodes are available that match all of the following predicates:: Insufficient cpu (3).

If there is no sufficient resources available on any of the nodes, Kubernetes holds
back scheduling the POD, and you will see the POD in a pending state. If you look at
the events, you will see the reason – insufficient cpu.

145

KodeKloud.com

256 Mi

MEM

0.5

DiskCPU

Resource Requests

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

resources:

requests:

memory: "1Gi"

cpu: 1

Let us now focus on the resource requirements for each POD. What are these blocks
and what are their values? By default, kubernetes assumes that a POD or a container
within a POD requires .5 CPU & 256 Mebibyte of memory. This is known as the
resource request for a container. The minimum amount of CPU or Memory requested
by the container. When the scheduler tries to place the POD on a Node, it uses these
numbers to identify a Node which has sufficient amount of resources available. Now,
if you know that your application will need more than these, you can modify these
values, by specifying them in your POD or deployment definition files. In this sample
pod definition file, add a section called resources, under which add requests and
specify the new values for memory and cpu usage. In this case I set it to 1GB of
memory and 1 count of vCPU.

146

KodeKloud.com

0.5

CPU

Resource - CPU

0.1

CPU

100m

CPU
1m
CPU

• 1 AWS vCPU
• 1 GCP Core
• 1 Azure Core
• 1 Hyperthread

5

CPU

So what does 1 count of CPU really mean? Remember these blocks are used for
illustration purpose only. It doesn’t have to be in the increment of .5. You can specify
any value as low as 0.1. 0.1 CPU can also be expressed as 100m were m stands for
milli. You can go as low as 1m, but not lower than that. 1 count of CPU is equivalent
to 1 vCPU. That’s 1 vCPU in AWS, or 1 Core in GCP or Azure or 1 Hyperthread. You
could request a higher number of CPUs for the container, provided your Nodes are
sufficiently funded.

147

KodeKloud.com

256 Mi

MEM

Resource - Memory

268435456

MEM

268M

MEM

1G

MEM

1 Gi (Gibibyte) = 1,073,741,824 bytes

1 M (Megabyte) = 1,000,000 bytes

1 K (Kilobyte) = 1,000 bytes

1 G (Gigabyte) = 1,000,000,000 bytes

1 Mi (Mebibyte) = 1,048,576 bytes

1 Ki (Kibibyte) = 1,024 bytes

Similarly, with memory you could specify 256 Mebibyte using the Mi suffix. Or specify
the same value in Memory like this. Or specify the same value in Memory like this. Or
use the suffix G for Gigabyte. Note the difference between G and Gi. G is Gigabyte
and it refers to a 1000 Megabytes, whereas Gi refers to Gibibyte and refers to 1024
Mebibyte. The same applies to Megabyte and Kilobyte

148

KodeKloud.com

Resource Limits

CPU MEM DISK

1 vCPU

Let’s now look at a container running on a Node. In the Docker world, a docker
container has no limit to the resources it can consume on a Node. Say a container
starts with 1 vCPU on a Node, it can go up and consume as much resource as it
requires, suffocating the native processes on the node or other containers of
resources. However, you can set a limit for the resource usage on these PODs. By
default Kubernetes sets a limit of 1vCPU to containers. So if you do not specify
explicitly, a container will be limited to consume only 1 vCPU from the Node.

149

KodeKloud.com

Resource Limits

CPU MEM DISK

1 vCPU 512 Mi

The same goes with memory. By default, kubernetes sets a limit of 512 Mebibyte on
containers.

150

KodeKloud.com

Resource Limits

CPU MEM DISK

1 vCPU 512 Mi

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

resources:

requests:

memory: "1Gi"

cpu: 1

limits:

memory: “2Gi"

cpu: 2

If you don’t like the default limits, you can change them by adding a limits section
under the resources section in your pod definition. Specify new limits for memory
and cpu.

151

KodeKloud.com

Resource Limits

CPU MEM DISK

2 vCPU

2 Gi

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

resources:

requests:

memory: "1Gi"

cpu: 1

limits:

memory: “2Gi"

cpu: 2

When the pod is created, kubernetes sets new limits for the container. Remember
that the limits and requests are set for each container.

152

KodeKloud.com

Resource Limits

CPU MEM DISK

2 vCPU

2 Gi

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp-color

labels:

name: simple-webapp-color

spec:

containers:

- name: simple-webapp-color

image: simple-webapp-color

ports:

- containerPort: 8080

pod-definition.yaml

resources:

requests:

memory: "1Gi"

cpu: 1

limits:

memory: “2Gi"

cpu: 2

When the pod is created, kubernetes sets new limits for the container. Remember
that the limits and requests are set for each container.

153

KodeKloud.com

Exceed Limits

CPU MEM DISK

2 vCPU

2 Gi

THROTTLE TERMINATE

So what happens when a pod tries to exceed resources beyond its specified limit. In
case of the CPU, kubernetes throttles the CPU so that it does not go beyond the
specified limit. A container cannot use more CPU resources than its limit. However,
this is not the case with memory. A container CAN use more memory resources that
its limit. So if a pod tries to consume more memory than its limit constantly, the POD
will be terminated.

154

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743659

155

KodeKloud.com

References

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-
namespace/

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-default-namespace/

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-constraint-
namespace/

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-
namespace/

156

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Ambassador

Adapter

Sidecar

Hello and welcome to this section on Multi-Container Pods. My name is Mumshad
Mannambeth and we are going through the Certified Kubernetes Applications
Developer course.

There are different patterns of multi-container pods such as the Ambassador, Adapter
and Sidecar. We will look at each of these in this section.

157

KodeKloud.com

158

Kubernetes
Multi-Container
PODs

Before we head into each of these, let us start with the basic type of POD.

158

KodeKloud.com

MONOLITH

The idea of decoupling a large monolithic application into …

159

KodeKloud.com

MICROSERVICES

.. subcomponents known as microservices enables us to develop and deploy a set of
independent, small and reusable code.

160

KodeKloud.com MICROSERVICES

This, architecture then helps us

161

KodeKloud.com MICROSERVICES

scale up..

162

KodeKloud.com MICROSERVICES

… , down as well as modify each service as required, as opposed to modifyin the
entire application.

163

KodeKloud.com

WEB Server

LOG Agent

However, at times you may need two services to work together. Such as a web server
and a logging service. You need one agent per web server instance paired together …

164

KodeKloud.com

WEB Server

LOG Agent

You don’t want to merge and bloat the code of the two services, as each of them
target different features, and you’d still like them to be developed and deployed
separately.

165

KodeKloud.com

WEB Server

LOG Agent

You only need the two functionality to work together. You need one agent per web
server instance paired together …

166

KodeKloud.com

.. that can scale up …

167

KodeKloud.com

POD

Multi-Container PODs

POD

.. and down together. And that is why you have multi-container PODs….

168

KodeKloud.com

Multi-Container PODs

POD

LIFECYCLE

NETWORK

STORAGE

that share the same lifecycle – which means they are created together and destroyed
together. They share the same network space, which means they can refer to each
other as localhost. And they have access to the same storage volumes. This way, you
do not have to establish, volume sharing or services between the PODs to enable
communication between them.

169

KodeKloud.com

Create

POD

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp

labels:

name: simple-webapp

spec:

containers:

- name: simple-webapp

image: simple-webapp

ports:

- containerPort: 8080

pod-definition.yaml

- name: log-agent

image: log-agent

To create a multi-container pod, add the new container information to the pod-
definition file. Remember, the containers section under the spec section in a pod
definition file is an array and the reason it is an array is to allow multiple containers in
a single POD. In this case we add a new container named log-agent to our existing
pod. We will look at more realistic examples later.

170

KodeKloud.com

Design Patterns

SIDECAR

There are 3 common patterns, when it comes to designing multi-container PODs. The
first and what we just saw with the logging service example is known as a side car
pattern.

171

KodeKloud.com

Design Patterns

SIDECAR ADAPTER AMBASSADOR

The others are the adapter and the ambassador pattern.

172

KodeKloud.com

Design Patterns - Sidecar

SIDECAR

Log Server

A good example of a side car pattern is deploying a logging agent along side a web
server to collect logs and forward them to a central log server.

173

KodeKloud.com

Design Patterns

12-JULY-2018 16:05:49 "GET /index1.html" 200

12/JUL/2018:16:05:49 -0800 "GET /index2.html" 200

GET 1531411549 "/index3.html" 200

Building on that example, say we have multiple applications generating logs in
different formats. It would be hard to process the various formats on the central
logging server.

174

KodeKloud.com

Design Patterns

12-JULY-2018 16:05:49 "GET /index1.html" 200

12/JUL/2018:16:05:49 -0800 "GET /index2.html" 200

GET 1531411549 "/index3.html" 200

12-JULY-2018 16:05:49 "GET /index1.html" 200

12-JULY-2018 16:05:49 "GET /index2.html" 200

12-JULY-2018 16:05:49 "GET /index3.html" 200

ADAPTER

So, before sending the logs to the central server, we would like to convert the logs to
a common format. For this we deploy an adapter container. The adapter container
processes the logs, before sending it to the central server.

175

KodeKloud.com

Design Patterns - Ambassador

Dev

Test

Prod

So your application communicates to different database instances at different stages
of development. A local database for development, one for testing and another for
production. You must ensure to modify this connectivity depending on the
environment you are deploying your application to.

176

KodeKloud.com

Design Patterns - Ambassador

Dev

Test

Prod

You may chose to outsource such logic to a separate container within your POD, so
that your application can always refer to a database at localhost, and the new
container, will proxy that request to the right database. This is known as an
ambassador container.

177

KodeKloud.com

Design Patterns - Ambassador

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp

labels:

name: simple-webapp

spec:

containers:

- name: simple-webapp

image: simple-webapp

ports:

- containerPort: 8080

pod-definition.yaml

- name: log-agent

image: log-agent

Again, remember that these are different patterns in designing a multi-container pod.
When it comes to implementing them using a pod-definition file, it is always the
same. You simply have multiple containers within the pod definition file.

Well that’s it for this lecture. Head over to the coding exercises section and practice
configuring multi-container pods. See you in the next lecture.

178

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743661

179

KodeKloud.com

References

https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-
shared-volume/

https://kubernetes.io/docs/tasks/access-application-cluster/communicate-containers-same-pod-
shared-volume/

180

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Readiness Probes

Container Logging

Monitor and Debug Applications

Liveness Probes

Hello and welcome to this section. In this section we learn about Observability in
Kubernetes. We will discuss about Readiness and Liveness Probes, Logging and
Monitoring concepts.

181

KodeKloud.com

182

Readiness
Probes

Let us start with Readiness Probes

182

KodeKloud.com

POD Status POD Conditions

We discuss about Pod Lifecycle in detail in another lecture. However, as a pre-
requisite for this lecture, we will quickly recap few different stages in the lifecycle of a
POD. A POD has a pod status and some conditions.

183

KodeKloud.com

POD Status

Pending

ContainerCreating

Running

The POD status tells us were the POD is in its lifecycle. When a POD is first created, it
is in a Pending state. This is when the Scheduler tries to figure out were to place the
POD. If the scheduler cannot find a node to place the POD, it remains in a Pending
state. To find out why it’s stuck in a pending state, run the kubectl describe pod
command, and it will tell you exactly why.

Once the POD is scheduled, it goes into a ContainerCreating status, were the images
required for the application are pulled and the container starts. Once all the
containers in a POD starts, it goes into a running state, were it continues to be until
the program completes successfully or is terminated.

You can see the pod status in the output of the kubectl get pods command. So
remember, at any point in time the POD status can only be one of these values and
only gives us a high level summary of a POD. However, at times you may want
additional information.

184

KodeKloud.com

POD Conditions

PodScheduled FALSE

Initialized FALSE

ContainersReady FALSE

Ready FALSE

TRUE

TRUE

TRUE

TRUE

TRUE FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

kubectl describe pod

Name: nginx-65899c769f-9lwzh
Namespace: default
Node: kubenode2/192.168.1.103
Start Time: Wed, 08 Aug 2018 22:57:39 -0400
Labels: pod-template-hash=2145573259

run=nginx
Annotations: <none>
Status: Running
IP: 10.244.2.222
Controlled By: ReplicaSet/nginx-65899c769f
Containers:
nginx:

Image: nginx
Image ID: docker-

pullable://nginx@sha256:d85914d547a6c92faa39ce7058bd7529baa
cab7e0cd4255442b04577c4d1f424

Port: <none>
Host Port: <none>
State: Running

Started: Wed, 08 Aug 2018 22:57:55 -0400
Ready: True

default-token-hxr6t (ro)
Conditions:
Type Status
Initialized True
Ready True
PodScheduled True

Conditions compliment POD status. It is an array of true or false values that tell us the
state of a POD. When a POD is scheduled on a Node, the PodScheduled condition is
set to True. When the POD is initialized, it’s value is set to True. We know that a POD
has multiple containers. When all the containers in the POD are ready, the Containers
Ready condition is set to True and finally the POD itself is considered to be Ready.

To see the state of POD conditions run the kubectl describe POD command and look
for the conditions section.

You can also see the Ready state of the POD, in the output of the kubectl get pods
command.

And that is the condition we are interested in for this lecture.

185

KodeKloud.com

POD Conditions

ContainersReady FALSE

Ready FALSE

TRUE

TRUE

TRUE

TRUE

The ready conditions indicate that the application inside the POD is running and is
ready to accept user traffic. What does that really mean? The containers could be
running different kinds of applications in them. It could be a simple script that
performs a job. It could be a database service. Or a large web server, serving front
end users. The script may take a few milliseconds to get ready. The database service
may take a few seconds to power up. Some web servers could take several minutes to
warm up. If you try to run an instance of a Jenkins server, you will notice that it takes
about 10-15 seconds for the server to initialize before a user can access the web UI.
Even after the Web UI is initialized, it takes a few seconds for the server to warm up
and be ready to serve users. During this wait period if you look at the state of the
POD, it continues to indicate that the POD is ready, which is not very true.

So why is that happening and how does kubernetes know weather that the
application inside the container is actually running or not? But before we get into
that discussion, why does it matter if the state is reported incorrectly.

186

KodeKloud.com

POD Conditions

Creating

Ready

Creating

Ready

Let us look at a simple scenario were you create a POD and expose it to external
users using a service. The service will route traffic to the POD immediately. The
service relies on the pod’s READY condition to route traffic.

By default, Kubernetes assumes that as soon as the container is created, it is ready to
serve user traffic. So it sets the value of the “Ready Condition” for each container to
True. But if the application within the container took longer to get ready, the service
is unaware of it and sends traffic through as the container is already in a ready state,
causing users to hit a POD that isn’t yet running a live application.

What we need here is a way to tie the ready condition to the actual state of the
application inside the container. As a Developer of the application, YOU know better
what it means for the application to be ready.

187

KodeKloud.com

Readiness Probes

HTTP Test - /api/ready TCP Test - 3306 Exec Command

There are different ways that you can define if an application inside a container is
actually ready. You can setup different kinds of tests or Probes, which is the
appropriate term. In case of a web application it could be when the API server is up
and running. So you could run a HTTP test to see if the API server responds. In case
of database, you may test to see if a particular TCP socket is listening. Or You may
simply execute a command within the container to run a custom script that would
exit successfully if the application is ready.

188

KodeKloud.com

Readiness Probe
apiVersion: v1

kind: Pod

metadata:

name: simple-webapp

labels:

name: simple-webapp

spec:

containers:

- name: simple-webapp

image: simple-webapp

ports:

- containerPort: 8080

pod-definition.yaml

readinessProbe:

httpGet:

path: /api/ready

port: 8080

HTTP Test - /api/ready

Creating

Ready

So how do you configure that test? In the pod definition file, add a new field called
readinessProbe and use the httpGet option. Specify the port and the ready api. Now
when the container is created, kubernetes does not immediately set the ready
condition on the container to true, instead, it performs a test to see if the api
responds positively. Until then the service does not forward any traffic to the pod, as
it sees that the POD is not ready.

189

KodeKloud.com

Readiness Probe
readinessProbe:

httpGet:

path: /api/ready

port: 8080

HTTP Test - /api/ready TCP Test - 3306 Exec Command

readinessProbe:

tcpSocket:

port: 3306

readinessProbe:

exec:

command:

- cat

- /app/is_ready
initialDelaySeconds: 10

periodSeconds: 5

failureThreshold: 8

There are different ways a probe can be configured. For http, use the httpGet option
with the path and port. For TCP use the tcpSocket option with port. And for
executing a command specify the exec option with the command and options in an
array format. There are some additional options as well. If you know that your
application will always take a minimum of, say, 10 seconds to warm up, you can add
an initial delay to the probe. If you’d like to specify how often to probe, you can do
that using the periodSeconds option. By default if the application is not ready after 3
attempts, the probe will stop. If you’d like to make more attempts, use the
failureThreshold option. We will look through more options in the Documentation
Walkthrough.

190

KodeKloud.com

POD Conditions

Ready Ready Creating

Ready

Finally, Let us look at how readinessProbes are useful in a multi-pod setup. Say you
have a replica set or deployment with multiple pods. And a service serving traffic to
all the pods. There are two PODs already serving users. Say you were to add an
additional pod. And let’s say the Pod takes a minute to warm up. Without the
readinessProbe configured correctly, the service would immediately start routing
traffic to the new pod. That will result in service disruption to atleast some of the
users.

191

KodeKloud.com

POD Conditions

Ready Ready Creating

Ready

Instead if the pods were configured with the correct readinessProbe, the service will
continue to serve traffic only to the older pods and wait until the new pod is ready.
Once ready, traffic will be routed to the new pod as well, ensuring no users are
affected.

Well that’s it for this lecture. Head over and practice what you learned in the coding
exercises.

192

KodeKloud.com

References

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

193

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Readiness Probes

Container Logging

Monitor and Debug Applications

Liveness Probes

Hello and welcome to this lecture. My name is Mumshad Mannambeth and we are
learning the Certified Kubernetes Applications Developer’s course. In this lecture we
will talk about Liveness Probes.

194

KodeKloud.com

195

Liveness
Probes

195

KodeKloud.com

Docker

docker run nginx

CONTAINER ID IMAGE CREATED STATUS PORTS
45aacca36850 nginx 43 seconds ago Exited (1) 41 seconds ago

docker ps -a

Let’s start from the basics. You run an image of NGINX using docker and it starts to
serve users. For some reason the web server crashes and the nginx process exits. The
container exits as well. And you can see the status of the container when you run the
docker ps command. Since docker is not an orchestration engine, the container
continues to stay dead and deny services to users, until you manually create a new
container.

196

KodeKloud.com

Kubernetes

kubectl run nginx --image=nginx

NAME READY STATUS RESTARTS AGE
nginx-pod 0/1 Completed 0 1d

kubectl get pods

12

Enter Kubernetes Orchestration. You run the same web application with kubernetes.
Every time the application crashes, kubernetes makes an attempt to restart the
container to restore service to users. You can see the count of restarts increase in the
output of kubectl get pods command. Now this works just fine.

197

KodeKloud.com

However, what if the application is not really working but the container continues to
stay alive? Say for example, due to a bug in the code, the application is stuck in an
infinite loop. As far as kubernetes is concerned, the container is up, so the application
is assumed to be up. But the users hitting the container are not served. In that case,
the container needs to be restarted, or destroyed and a new container is to be
brought up. That is where the liveness probe can help us. A liveness probe can be
configured on the container to periodically test whether the application within the
container is actually healthy. If the test fails, the container is considered unhealthy
and is destroyed and recreated.

But again, as a developer, you get to define what it means for an application to be
healthy.

198

KodeKloud.com

Liveness Probes

HTTP Test - /api/healthy TCP Test - 3306 Exec Command

In case of a web application it could be when the API server is up and running. In case
of database, you may test to see if a particular TCP socket is listening. Or You may
simply execute a command to perform a test.

199

KodeKloud.com

Liveness Probe
apiVersion: v1

kind: Pod

metadata:

name: simple-webapp

labels:

name: simple-webapp

spec:

containers:

- name: simple-webapp

image: simple-webapp

ports:

- containerPort: 8080

pod-definition.yaml

livenessProbe:

httpGet:

path: /api/healthy

port: 8080

HTTP Test - /api/ready

The liveness probe is configured in the pod definition file as you did with the
readinessProbe. Except here you use liveness instead of readiness.

200

KodeKloud.com

Liveness Probe
readinessProbe:

httpGet:

path: /api/ready

port: 8080

HTTP Test - /api/ready TCP Test - 3306 Exec Command

readinessProbe:

tcpSocket:

port: 3306

readinessProbe:

exec:

command:

- cat

- /app/is_ready
initialDelaySeconds: 10

periodSeconds: 5

failureThreshold: 8

Similar to readiness probe you have httpGet option for apis, tcpSocker for ports and
exec for commands. As well as additional options like initialDelay before the test is
run, periodSeconds to define the frequency and success and failure thresholds.

Well that’s it for this lecture. Head over and practice what you learned in the coding
exercises section.

We have some fun and challenging exercises were you will be required to configure
probes as well as troubleshoot and fix issues with existing probes.

See you in the next lecture.

201

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743663

202

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Readiness Probes

Container Logging

Monitor and Debug Applications

Liveness Probes

Hello and welcome to this lecture. In this lecture we will talk about various Logging
mechanisms in kubernetes.

203

KodeKloud.com

204

Container
Logging

204

KodeKloud.com

2018-10-06 15:57:15,937 - root - INFO - USER1 logged in
2018-10-06 15:57:16,943 - root - INFO - USER2 logged out
2018-10-06 15:57:17,944 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:18,951 - root - INFO - USER3 is viewing page3
2018-10-06 15:57:19,954 - root - INFO - USER4 is viewing page1
2018-10-06 15:57:20,955 - root - INFO - USER2 logged out
2018-10-06 15:57:21,956 - root - INFO - USER1 logged in
2018-10-06 15:57:22,957 - root - INFO - USER3 is viewing page2
2018-10-06 15:57:23,959 - root - INFO - USER1 logged out
2018-10-06 15:57:24,959 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:25,961 - root - INFO - USER1 logged in
2018-10-06 15:57:26,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:27,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:28,967 - root - INFO - USER2 is viewing page1
2018-10-06 15:57:29,967 - root - INFO - USER3 logged out
2018-10-06 15:57:30,972 - root - INFO - USER1 is viewing page2
2018-10-06 15:57:31,972 - root - INFO - USER4 logged out
2018-10-06 15:57:32,973 - root - INFO - USER1 logged in
2018-10-06 15:57:33,974 - root - INFO - USER1 is viewing page3

Logs - Docker

docker run kodekloud/event-simulator

Let us start with logging in Docker. I run a docker container called event-simulator and
all that it does is generate random events simulating a web server. These are events
streamed to the standard output by the application.

205

KodeKloud.com

Logs - Docker
docker run -d kodekloud/event-simulator

docker logs -f ecf

2018-10-06 15:57:15,937 - root - INFO - USER1 logged in
2018-10-06 15:57:16,943 - root - INFO - USER2 logged out
2018-10-06 15:57:17,944 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:18,951 - root - INFO - USER3 is viewing page3
2018-10-06 15:57:19,954 - root - INFO - USER4 is viewing page1
2018-10-06 15:57:20,955 - root - INFO - USER2 logged out
2018-10-06 15:57:21,956 - root - INFO - USER1 logged in
2018-10-06 15:57:22,957 - root - INFO - USER3 is viewing page2
2018-10-06 15:57:23,959 - root - INFO - USER1 logged out
2018-10-06 15:57:24,959 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:25,961 - root - INFO - USER1 logged in
2018-10-06 15:57:26,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:27,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:28,967 - root - INFO - USER2 is viewing page1
2018-10-06 15:57:29,967 - root - INFO - USER3 logged out
2018-10-06 15:57:30,972 - root - INFO - USER1 is viewing page2
2018-10-06 15:57:31,972 - root - INFO - USER4 logged out
2018-10-06 15:57:32,973 - root - INFO - USER1 logged in
2018-10-06 15:57:33,974 - root - INFO - USER1 is viewing page3

Now, if I were to run the docker container in the background, in a detached mode
using the –d option, I wouldn’t see those logs. If I wanted to view the logs, I could
use the docker logs command followed by the container ID. The –f option helps us
see the live log trail.

206

KodeKloud.com

Logs - Kubernetes

kubectl create –f event-simulator.yaml

apiVersion: v1

kind: Pod

metadata:

name: event-simulator-pod

spec:

containers:

- name: event-simulator

image: kodekloud/event-simulator

event-simulator.yaml

kubectl logs –f event-simulator-pod

2018-10-06 15:57:15,937 - root - INFO - USER1 logged in
2018-10-06 15:57:16,943 - root - INFO - USER2 logged out
2018-10-06 15:57:17,944 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:18,951 - root - INFO - USER3 is viewing page3
2018-10-06 15:57:19,954 - root - INFO - USER4 is viewing page1
2018-10-06 15:57:20,955 - root - INFO - USER2 logged out
2018-10-06 15:57:21,956 - root - INFO - USER1 logged in
2018-10-06 15:57:22,957 - root - INFO - USER3 is viewing page2
2018-10-06 15:57:23,959 - root - INFO - USER1 logged out
2018-10-06 15:57:24,959 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:25,961 - root - INFO - USER1 logged in
2018-10-06 15:57:26,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:27,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:28,967 - root - INFO - USER2 is viewing page1
2018-10-06 15:57:29,967 - root - INFO - USER3 logged out
2018-10-06 15:57:30,972 - root - INFO - USER1 is viewing page2
2018-10-06 15:57:31,972 - root - INFO - USER4 logged out
2018-10-06 15:57:32,973 - root - INFO - USER1 logged in
2018-10-06 15:57:33,974 - root - INFO - USER1 is viewing page3

Now back to Kubernetes. We create a pod with the same docker image using the pod
definition file. Once it’s the pod is running, we can view the logs using the kubectl
logs command with the pod name. Use the –f option to stream the logs live.

207

KodeKloud.com

Logs - Kubernetes

apiVersion: v1

kind: Pod

metadata:

name: event-simulator-pod

spec:

containers:

- name: event-simulator

image: kodekloud/event-simulator

event-simulator.yaml

- name: image-processor

image: some-image-processor

kubectl logs –f event-simulator-pod event-simulator

2018-10-06 15:57:15,937 - root - INFO - USER1 logged in
2018-10-06 15:57:16,943 - root - INFO - USER2 logged out
2018-10-06 15:57:17,944 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:18,951 - root - INFO - USER3 is viewing page3
2018-10-06 15:57:19,954 - root - INFO - USER4 is viewing page1
2018-10-06 15:57:20,955 - root - INFO - USER2 logged out
2018-10-06 15:57:21,956 - root - INFO - USER1 logged in
2018-10-06 15:57:22,957 - root - INFO - USER3 is viewing page2
2018-10-06 15:57:23,959 - root - INFO - USER1 logged out
2018-10-06 15:57:24,959 - root - INFO - USER2 is viewing page2
2018-10-06 15:57:25,961 - root - INFO - USER1 logged in
2018-10-06 15:57:26,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:27,965 - root - INFO - USER4 is viewing page3
2018-10-06 15:57:28,967 - root - INFO - USER2 is viewing page1
2018-10-06 15:57:29,967 - root - INFO - USER3 logged out
2018-10-06 15:57:30,972 - root - INFO - USER1 is viewing page2
2018-10-06 15:57:31,972 - root - INFO - USER4 logged out
2018-10-06 15:57:32,973 - root - INFO - USER1 logged in
2018-10-06 15:57:33,974 - root - INFO - USER1 is viewing page3

Now, these logs are specific to the container running inside the POD. As we learned
before, Kubernetes PODs can have multiple docker containers in them. In this case I
modify my pod definition file to include an additional container called image-
processor. If you ran the kubectl logs command now with the pod name, which
container’s log would it show? If there are multiple containers within a pod, you must
specify the name of the container explicitly in the command, otherwise it would fail
asking you to specify a name. In this case I will specify the name of the first
container event-simulator and that prints the relevant log messages.

Now, that is the simple logging functionality implemented within Kubernetes. And
that is all that an application developer really needs to know to get started with
Kubernetes. However, in the next lecture we will see more about advanced logging
configuration and 3rd party support for logging in Kubernetes.

208

KodeKloud.com

Practice Test

Check Link
Below!

Access Video Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743665

209

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Readiness Probes

Container Logging

Monitor and Debug Applications

Liveness Probes

Hello and welcome to this lecture. In this lecture we will talk about the various
monitoring and debugging options available.

210

KodeKloud.com

211

Monitoring
Kubernetes

211

Hello and welcome to this lecture. In this lecture we talk about Monitoring a
Kubernetes cluster.

211

KodeKloud.com

Monitor
212

CPU MEM DISK CPU MEM DISK CPU MEM DISK

So how do you monitor resource consumption on Kubernetes? Or more importantly
what would you like to monitor? I’d like to know Node level metrics such as the
number of nodes in the cluster, how many of them are healthy as well as
performance metrics such as CPU. Memory, network and disk utilization.

212

KodeKloud.com

Monitor
213

Monitoring Solution

18 Oct 2018

CPU MEM DISK CPU MEM DISK CPU MEM DISK

Prometheus

METRICS
SERVER

Elastic Stack

As well as POD level metrics such as the number of PODs, and performance metrics
of each POD such the CPU and Memory consumption. So we need a solution that
will monitor these metrics, store them and provide analytics around this data.

As of this recording , Kubernetes does not come with a full featured built-in
monitoring solution. However, there are a number of open-source solutions available
today, such as the Metrics-Server, Prometheus, the Elastic Stack, and proprietary
solutions like Datadog and Dynatrace.

213

KodeKloud.com

Monitor

Prometheus

METRICS
SERVER

Elastic Stack

The kubernetes for developers course as well as the certification, requires only a
minimal knowledge of monitoring kubernetes.

214

KodeKloud.com

Monitor

Prometheus

METRICS
SERVER Elastic Stack

So in the scope of this course, we will discuss about the Metrics Server only. The
other solutions will be discussed in the Kubernetes for administrators course.

215

KodeKloud.com

Heapster vs Metrics Server

METRICS
SERVER

HEAPSTER

DEPRECATED

Heapster was one of the original projects that enabled monitoring and analysis
features for Kubernetes. You will see a lot of reference online when you look for
reference architectures on monitoring Kubernetes. However, Heapster is now
Deprecated and a slimmed down version was formed known as the Metrics Server.

216

KodeKloud.com

Metrics Server
METRICS
SERVER

CPU MEM DISK CPU MEM DISK
CPU MEM DISK

You can have one metrics server per kubernetes cluster.

217

KodeKloud.com

Metrics Server
METRICS
SERVER

* *

IN-MEMORY

The metrics server retrieves metrics from each of the kubernetes nodes and pods,
aggregates them and stores them in memory. Note that the metrics server is only an
in-memory monitoring solution and does not store the metrics on the disk, and as a
result you cannot see historical performance data. For that you must rely on one of
the advanced monitoring solutions we talked about earlier in this lecture.

218

KodeKloud.com

Metrics Server
METRICS
SERVER

KUBELET

So how are the metrics generated for the PODs on these nodes? Kubernetes runs an
agent on each node known as the kubelet, which is responsible for receiving
instructions from the kubernetes API master server and running PODs on the nodes.
The kubelet also contains a subcomponent known as as cAdvisor or Container
Advisor. cAdvisor is responsible for retrieving performance metrics from pods, and
exposing them through the kubelet API to make the metrics available for the Metrics
Server.

219

KodeKloud.com

Metrics Server – Getting Started

minikube addons enable metrics-server

git clone https://github.com/kubernetes-incubator/metrics-server.git

kubectl create –f deploy/1.8+/

others

clusterrolebinding "metrics-server:system:auth-delegator" created
rolebinding "metrics-server-auth-reader" created
apiservice "v1beta1.metrics.k8s.io" created
serviceaccount "metrics-server" created
deployment "metrics-server" created
service "metrics-server" created
clusterrole "system:metrics-server" created
clusterrolebinding "system:metrics-server" created

If you are using minikube for your local cluster, run the command minikube addons
enable metrics-server. For all other environments deploy the metrics server by
cloning the metrics-server deployment files from the github repository. And then
deploying the required components using the kubectl create command. This
command deploys a set of pods, services and roles to enable metrics server to poll
for performance metrics from the nodes in the cluster.

220

KodeKloud.com

View

kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
kubemaster 166m 8% 1337Mi 70%
kubenode1 36m 1% 1046Mi 55%
kubenode2 39m 1% 1048Mi 55%

kubectl top pod

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
nginx 166m 8% 1337Mi 70%
redis 36m 1% 1046Mi 55%

Once deployed, give the metrics-server some time to collect and process data. Once
processed, cluster performance can be viewed by running the command kubectl top
node. This provides the CPU and Memory consumption of each of the nodes. As you
can see 8% of the CPU on my master node is consumed, which is about 166 milli
cores.

Use the kubectl top pod command to view performance metrics of pods in
kubernetes.

221

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743690

222

KodeKloud.com

References

• https://kubernetes.io/docs/tasks/debug-application-
cluster/core-metrics-pipeline/

• https://kubernetes.io/docs/tasks/debug-application-
cluster/resource-usage-monitoring/

223

223

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

We then move on to Labels & Selectors. And then Rolling updates and rollbacks in
deployments. We will learn about why you need Jobs and CronJobs and how to
schedule them.

224

KodeKloud.com

225

Labels,
Selectors &
Annotations

Let us start with Labels and Selectors. What do we know about Labels and Selectors
already?

225

KodeKloud.com

Animals

Labels and Selectors are a standard method to group things together. Say you have a
set of different species. A user wants to be able to filter them based on different
criteria.

226

KodeKloud.com

Class

Arthropods

Mammals

Reptiles Birds

Fish

Such as based on their class.

227

KodeKloud.com

Kind

WildDomestic

Or based on their type – domestic or wild.

228

KodeKloud.com

Color

OrangeGreen Blue Pink

Or say by color.

229

KodeKloud.com

Color - Green

Green

And not just group, you want to be able to filter them based on a criteria. Such as all
green animals

230

KodeKloud.com

Color – Green - Bird

Green - Bird

Or with multiple criteria such as everything green that is also a bird. Whatever that
classification may be you need the ability to group things together and filter them
based on your needs. And the best way to do that, is with labels.

231

KodeKloud.com

Labels

Labels are properties attached to each item.

232

KodeKloud.com

Labels

MammalClass

MammalClass

ReptileClass

BirdClass

DomesticKind

DomesticKind

WildKind

DomesticKind

GreenColor

OrangeColor

PurpleColor

GreenColor

Labels are properties attached to each item. So you add properties to each item for
their class, kind and color.

233

KodeKloud.com

Selectors

MammalClass

MammalClass

ReptileClass

BirdClass

DomesticKind

DomesticKind

WildKind

DomesticKind

GreenColor

OrangeColor

PurpleColor

GreenColor

Class = Mammal

Color = Green

&

Selectors help you filter these items. For example, when you say class equals
mammal, we get a list of mammals. And when you say color equals green, we get the
green mammals.

234

KodeKloud.com

We see labels and selectors used everywhere, such as the keywords you tag to
youtube videos or blogs that help users filter and find the right content.

235

KodeKloud.com

We see labels added to items in an online store that help you add different kinds of
filters to view your products.

236

KodeKloud.com

Labels & Selectors in Kubernetes

So how are labels and selectors used in Kubernetes? We have created a lot of
different types of Objects in Kuberentes. Pods, Services, ReplicaSets and
Deployments. For Kubernetes, all of these are different objects. Over time you may
end up having 100s and 1000s of these objects in your cluster. Then you will need a
way to filter and view different objects by different categories. Like

237

KodeKloud.com

Labels & Selectors in Kubernetes

Over time you may end up having 100s and 1000s of these objects in your cluster.
Then you will need a way to group, filter and view different objects by different
categories.

238

KodeKloud.com

Labels & Selectors in Kubernetes
PODs ReplicaSets Deployment Services

Such as to group objects by their type.

239

KodeKloud.com

Labels & Selectors in Kubernetes

APP1 APP2 APP3 APP4

APP5

Or view objects by application.

240

KodeKloud.com

Labels & Selectors in Kubernetes

Front-End

Web-Servers

Auth Image-Processing

DB Cache

Video-Processing

App-Servers

Back-End

Audit

Or by their functionality. Whatever it may be, you can group and select objects using
labels and selectors.

241

KodeKloud.com

Labels

App1app

App2app

App3app

App5app

App4app

Front-endfunction

Web-Serversfunction

Authfunction

DBfunction

Image-procfunction

For each object attach labels as per your needs, like app, function etc.

242

KodeKloud.com

Selectors

App1app

Front-endfunction

app = App1

Then while selecting, specify a condition to filter specific objects. For example app ==
App1.

243

KodeKloud.com

Labels

App1app

Front-endfunction

apiVersion: v1

kind: Pod

metadata:

name: simple-webapp

spec:

containers:

- name: simple-webapp

image: simple-webapp

ports:

- containerPort: 8080

pod-definition.yaml

labels:

app: App1

function: Front-end

So how exactly do you specify labels in kubernetes. In a pod-definition file, under
metadata, create a section called labels. Under that add the labels in a key value
format like this. You can add as many labels as you like.

244

KodeKloud.com

Select

NAME READY STATUS RESTARTS AGE
simple-webapp 0/1 Completed 0 1d

kubectl get pods --selector app=App1

Once the pod is created, to select the pod with the labels use the kubectl get pods
command along with the selector option, and specify the condition like app=App1.

245

KodeKloud.com

ReplicaSet

apiVersion: apps/v1

kind: ReplicaSet

metadata:

name: simple-webapp

labels:

app: App1

function: Front-end

spec:

replicas: 3

selector:

matchLabels:

app: App1

template:

metadata:

labels:

app: App1

function: Front-end

spec:

containers:

- name: simple-webapp

image: simple-webapp

replicaset-definition.yaml

Now this is one use case of labels and selectors. Kubernetes objects use labels and
selectors internally to connect different objects together. For example to create a
replicaset consisting of 3 different pods, we first label the pod definition and use
selector in a replicaset to group the pods . In the replica-set definition file, you will
see labels defined in two places. Note that this is an area where beginners tend to
make a mistake. The labels defined under the template section are the labels
configured on the pods. The labels you see at the top are the labels of the replica set.
We are not really concerned about that for now, because we are trying to get the
replicaset to discover the pods. The labels on the replicaset will be used if you were
configuring some other object to discover the replicaset. In order to connect the
replica set to the pods, we configure the selector field under the replicaset
specification to match the labels defined on the pod. A single label will do if it
matches correctly. However if you feel there could be other pods with that same label
but with a different function, then you could specify both the labels to ensure the
right pods are discovered by the replicaset.

246

KodeKloud.com

ReplicaSet

apiVersion: apps/v1

kind: ReplicaSet

metadata:

name: simple-webapp

labels:

app: App1

function: Front-end

spec:

replicas: 3

selector:

matchLabels:

app: App1

template:

metadata:

labels:

app: App1

function: Front-end

spec:

containers:

- name: simple-webapp

image: simple-webapp

replicaset-definition.yaml

On creation, if the labels match, the replicaset is created successfully.

247

KodeKloud.com

Service

apiVersion: apps/v1

kind: ReplicaSet

metadata:

name: simple-webapp

labels:

app: App1

function: Front-end

spec:

replicas: 3

selector:

matchLabels:

app: App1

template:

metadata:

labels:

app: App1

function: Front-end

spec:

containers:

- name: simple-webapp

image: simple-webapp

replicaset-definition.yaml

apiVersion: v1

kind: Service

metadata:

name: my-service

spec:

selector:

app: App1

ports:

- protocol: TCP

port: 80

targetPort: 9376

service-definition.yaml

It works the same for other objects like a service. When a service is created, it uses
the selector defined in the service definition file to match the labels set on the pods
in the replicaset-definition file.

248

KodeKloud.com

Annotations
apiVersion: apps/v1

kind: ReplicaSet

metadata:

name: simple-webapp

labels:

app: App1

function: Front-end

spec:

replicas: 3

selector:

matchLabels:

app: App1

template:

metadata:

labels:

app: App1

function: Front-end

spec:

containers:

- name: simple-webapp

image: simple-webapp

replicaset-definition.yaml

annotations:

buildversion: 1.34

Finally let’s look at annotations. While labels and selectors are used to group and
select objects, annotations are used to record other details for informatory purpose.
For example tool details like name, version build information etc or contact details,
phone numbers, email ids etc, that may be used for some kind of integration
purpose.

Well, that’s it for this lecture on Labels and Selectors. Head over to the coding
exercises section and practice working with labels and selectors.

249

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743692

250

KodeKloud.com

251

Rolling
Updates &
Rollbacks

Let us start with Labels and Selectors. What do we know about Labels and Selectors
already?

251

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

Let us now look at Rolling Updates & Rollbacks in Deployments.

252

KodeKloud.com

Deployment

Replica Set

POD POD POD POD POD POD PODPODPOD

v1 v2

Deployment

For a minute, let us forget about PODs and replicasets and other kubernetes concepts
and talk about how you might want to deploy your application in a production
environment. Say for example you have a web server that needs to be deployed in a
production environment. You need not ONE, but many such instances of the web
server running for obvious reasons.

Secondly, when newer versions of application builds become available on the docker
registry, you would like to UPGRADE your docker instances seamlessly.

However, when you upgrade your instances, you do not want to upgrade all of them
at once as we just did. This may impact users accessing our applications, so you may
want to upgrade them one after the other. And that kind of upgrade is known as
Rolling Updates.

Suppose one of the upgrades you performed resulted in an unexpected error and you
are asked to undo the recent update. You would like to be able to rollBACK the
changes that were recently carried out.

Finally, say for example you would like to make multiple changes to your environment

253

such as upgrading the underlying WebServer versions, as well as scaling your
environment and also modifying the resource allocations etc. You do not want to
apply each change immediately after the command is run, instead you would like to
apply a pause to your environment, make the changes and then resume so that all
changes are rolled-out together.

All of these capabilities are available with the kubernetes Deployments.

So far in this course we discussed about PODs, which deploy single instances of our
application such as the web application in this case. Each container is encapsulated in
PODs. Multiple such PODs are deployed using Replication Controllers or Replica Sets.
And then comes Deployment which is a kubernetes object that comes higher in the
hierarchy. The deployment provides us with capabilities to upgrade the underlying
instances seamlessly using rolling updates, undo changes, and pause and resume
changes to deployments.

253

KodeKloud.com

Definition
apiVersion:

kind:

metadata:

spec:

deployment-definition.yml

name: myapp-deployment

labels:

app: myapp

type: front-end

apps/v1

metadata:

name: myapp-pod

labels:

app: myapp

type: front-end

spec:

containers:

- name: nginx-container

image: nginx

replicas:

selector:

matchLabels:

type: front-end

template:

3

Deployment

> kubectl create –f deployment-definition.yml

deployment "myapp-deployment" created

> kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

myapp-deployment 3 3 3 3 21s

> kubectl get replicaset

NAME DESIRED CURRENT READY AGE

myapp-deployment-6795844b58 3 3 3 2m

> kubectl get pods

NAME READY STATUS RESTARTS AGE

myapp-deployment-6795844b58-5rbjl 1/1 Running 0 2m

myapp-deployment-6795844b58-h4w55 1/1 Running 0 2m

myapp-deployment-6795844b58-lfjhv 1/1 Running 0 2m

So how do we create a deployment. As with the previous components, we first
create a deployment definition file. The contents of the deployment-definition file
are exactly similar to the replicaset definition file, except for the kind, which is now
going to be Deployment.

If we walk through the contents of the file it has an apiVersion which is apps/v1,
metadata which has name and labels and a spec that has template, replicas and
selector. The template has a POD definition inside it.

Once the file is ready run the kubectl create command and specify deployment
definition file. Then run the kubectl get deployments command to see the newly
created deployment. The deployment automatically creates a replica set. So if you
run the kubectl get replcaset command you will be able to see a new replicaset in the
name of the deployment. The replicasets ultimately create pods, so if you run the
kubectl get pods command you will be able to see the pods with the name of the
deployment and the replicaset.

So far there hasn’t been much of a difference between replicaset and deployments,
except for the fact that deployments created a new kubernetes object called

254

deployments. We will see how to take advantage of the deployment using the use
cases we discussed in the previous slide in the upcoming lectures.

254

KodeKloud.com

commands
> kubectl get all

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

deploy/myapp-deployment 3 3 3 3 9h

NAME DESIRED CURRENT READY AGE

rs/myapp-deployment-6795844b58 3 3 3 9h

NAME READY STATUS RESTARTS AGE

po/myapp-deployment-6795844b58-5rbjl 1/1 Running 0 9h

po/myapp-deployment-6795844b58-h4w55 1/1 Running 0 9h

po/myapp-deployment-6795844b58-lfjhv 1/1 Running 0 9h

To see all the created objects at once run the kubectl get all command.

255

KodeKloud.com

Rollout and Versioning

Revision 1

Revision 2

nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0

nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1

Before we look at how we upgrade our application, let’s try to understand Rollouts
and Versioning in a deployment. Whenever you create a new deployment or upgrade
the images in an existing deployment it triggers a Rollout. A rollout is the process of
gradually deploying or upgrading your application containers. When you first create a
deployment, it triggers a rollout. A new rollout creates a new Deployment revision.
Let’s call it revision 1. In the future when the application is upgraded – meaning
when the container version is updated to a new one – a new rollout is triggered and a
new deployment revision is created named Revision 2. This helps us keep track of the
changes made to our deployment and enables us to rollback to a previous version of
deployment if necessary.

256

KodeKloud.com

Rollout Command
> kubectl rollout status deployment/myapp-deployment

Waiting for rollout to finish: 0 of 10 updated replicas are available...

Waiting for rollout to finish: 1 of 10 updated replicas are available...

Waiting for rollout to finish: 2 of 10 updated replicas are available...

Waiting for rollout to finish: 3 of 10 updated replicas are available...

Waiting for rollout to finish: 4 of 10 updated replicas are available...

Waiting for rollout to finish: 5 of 10 updated replicas are available...

Waiting for rollout to finish: 6 of 10 updated replicas are available...

Waiting for rollout to finish: 7 of 10 updated replicas are available...

Waiting for rollout to finish: 8 of 10 updated replicas are available...

Waiting for rollout to finish: 9 of 10 updated replicas are available...

deployment "myapp-deployment" successfully rolled out

> kubectl rollout history deployment/myapp-deployment

deployments "myapp-deployment"

REVISION CHANGE-CAUSE

1 <none>

2 kubectl apply --filename=deployment-definition.yml --record=true

You can see the status of your rollout by running the command: kubectl rollout status
followed by the name of the deployment.

To see the revisions and history of rollout run the command kubectl rollout history
followed by the deployment name and this will show you the revisions.

257

KodeKloud.com

Deployment Strategy

nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.0 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1 nginx:1.7.1

Application
Down

Recreate

nginx:1.7.0 nginx:1.7.0 nginx:1.7.0
nginx:1.7.0 nginx:1.7.0nginx:1.7.1 nginx:1.7.1 nginx:1.7.1

nginx:1.7.1
nginx:1.7.1

Rolling
Update

There are two types of deployment strategies. Say for example you have 5 replicas of
your web application instance deployed. One way to upgrade these to a newer
version is to destroy all of these and then create newer versions of application
instances. Meaning first, destroy the 5 running instances and then deploy 5 new
instances of the new application version. The problem with this as you can imagine,
is that during the period after the older versions are down and before any newer
version is up, the application is down and inaccessible to users. This strategy is
known as the Recreate strategy, and thankfully this is NOT the default deployment
strategy.

The second strategy is were we do not destroy all of them at once. Instead we take
down the older version and bring up a newer version one by one. This way the
application never goes down and the upgrade is seamless.

Remember, if you do not specify a strategy while creating the deployment, it will
assume it to be Rolling Update. In other words, RollingUpdate is the default
Deployment Strategy.

258

KodeKloud.com

Kubectl apply
apiVersion:

kind:

metadata:

spec:

deployment-definition.yml

name: myapp-deployment

labels:

app: myapp

type: front-end

apps/v1

metadata:

name: myapp-pod

labels:

app: myapp

type: front-end

spec:

containers:

- name: nginx-container

image: nginx

replicas:

selector:

matchLabels:

type: front-end

template:

3

Deployment

:1.7.1

> kubectl apply –f deployment-definition.yml

deployment "myapp-deployment" configured

> kubectl set image deployment/myapp-deployment \
nginx=nginx:1.9.1

deployment "myapp-deployment" image is updated

So we talked about upgrades. How exactly DO you update your deployment? When I
say update it could be different things such as updating your application version by
updating the version of docker containers used, updating their labels or updating the
number of replicas etc. Since we already have a deployment definition file it is easy
for us to modify this file. Once we make the necessary changes, we run the kubectl
apply command to apply the changes. A new rollout is triggered and a new revision of
the deployment is created.

But there is ANOTHER way to do the same thing. You could use the kubectl set image
command to update the image of your application. But remember, doing it this way
will result in the deployment-definition file having a different configuration. So you
must be careful when using the same definition file to make changes in the future.

259

KodeKloud.com

Recreate RollingUpdate

The difference between the recreate and rollingupdate strategies can also be seen
when you view the deployments in detail. Run the kubectl describe deployment
command to see detailed information regarding the deployments. You will notice
when the Recreate strategy was used the events indicate that the old replicaset was
scaled down to 0 first and the new replica set scaled up to 5. However when the
RollingUpdate strategy was used the old replica set was scaled down one at a time
simultaneously scaling up the new replica set one at a time.

260

KodeKloud.com

Upgrades

Deployment

Replica Set - 1

POD POD POD POD POD

Replica Set - 2

POD POD POD POD POD

> kubectl get replicasets

NAME DESIRED CURRENT READY AGE

myapp-deployment-67c749c58c 0 0 0 22m

myapp-deployment-7d57dbdb8d 5 5 5 20m

Let’s look at how a deployment performs an upgrade under the hoods. When a new
deployment is created, say to deploy 5 replicas, it first creates a Replicaset
automatically, which in turn creates the number of PODs required to meet the
number of replicas. When you upgrade your application as we saw in the previous
slide, the kubernetes deployment object creates a NEW replicaset under the hoods
and starts deploying the containers there. At the same time taking down the PODs in
the old replica-set following a RollingUpdate strategy.

This can be seen when you try to list the replicasets using the kubectl get replicasets
command. Here we see the old replicaset with 0 PODs and the new replicaset with 5
PODs.

261

KodeKloud.com

Rollback

Deployment

Replica Set - 1

POD POD POD POD POD

Replica Set - 2

POD POD POD POD POD

> kubectl rollout undo deployment/myapp-deployment

deployment “myapp-deployment” rolled back

> kubectl get replicasets

NAME DESIRED CURRENT READY AGE

myapp-deployment-67c749c58c 0 0 0 22m

myapp-deployment-7d57dbdb8d 5 5 5 20m

> kubectl get replicasets

NAME DESIRED CURRENT READY AGE

myapp-deployment-67c749c58c 5 5 5 22m

myapp-deployment-7d57dbdb8d 0 0 0 20m

Say for instance once you upgrade your application, you realize something isn’t very
right. Something’s wrong with the new version of build you used to upgrade. So you
would like to rollback your update. Kubernetes deployments allow you to rollback to
a previous revision. To undo a change run the command kubectl rollout undo
followed by the name of the deployment. The deployment will then destroy the
PODs in the new replicaset and bring the older ones up in the old replicaset. And your
application is back to its older format.

When you compare the output of the kubectl get replicasets command, before and
after the rollback, you will be able to notice this difference. Before the rollback the
first replicaset had 0 PODs and the new replicaset had 5 PODs and this is reversed
after the rollback is finished.

262

KodeKloud.com

kubectl run

> kubectl run nginx --image=nginx

deployment "nginx" created

And finally let’s get back to one of the commands we ran initially when we learned
about PODs for the first time. We used the kubectl run command to create a POD.
This command infact creates a deployment and not just a POD. This is why the output
of the command says Deployment nginx created. This is another way of creating a
deployment by only specifying the image name and not using a definition file. A
replicaset and pods are automatically created in the backend. Using a definition file is
recommended though as you can save the file, check it into the code repository and
modify it later as required.

263

KodeKloud.com

Summarize Commands

> kubectl rollout status deployment/myapp-deployment

> kubectl rollout history deployment/myapp-deployment

> kubectl create –f deployment-definition.yml

> kubectl get deployments

> kubectl apply –f deployment-definition.yml

> kubectl set image deployment/myapp-deployment nginx=nginx:1.9.1

> kubectl rollout undo deployment/myapp-deployment

Create

Get

Update

Status

Rollback

To summarize the commands real quick, use the kubectl create command to create
the deployment, get deployments command to list the deployments, apply and set
image commands to update the deployments, rollout status command to see the
status of rollouts and rollout undo command to rollback a deployment operation.

264

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743696

265

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

Let us now look at Rolling Updates & Rollbacks in Deployments.

266

KodeKloud.com

267

Jobs

Let us start with Jobs in Kubernetes.

267

KodeKloud.com

Types of Workloads

There are different types of workloads that a container can serve. A few that we have
seen through this course are Web, application and database. We have deployed
simple web servers that serve users. These workloads are meant to continue to run
for a long period of time, until manually taken down. There are other kinds of
workloads such as batch processing, analytics or reporting that are meant to carry
out a specific task and then finish.

268

KodeKloud.com

Types of Workloads

12 45

36 73
46.439998

For example, performing a computation, processing an image, performing some kind
of analytics on a large data set, generating a report and sending an email etc. These
are workloads that are meant to live for a short period of time, perform a set of tasks
and then finish.

269

KodeKloud.com

Docker

docker run ubuntu expr 3 + 2

CONTAINER ID IMAGE CREATED STATUS PORTS
45aacca36850 ubuntu 43 seconds ago Exited (0) 41 seconds ago

docker ps -a

3 2 5

Let us first see how such a work load works in Docker and then we will relate the
same concept to Kubernetes. So I am going to run a docker container to perform a
simple math operation. To add two numbers. The docker container comes up,
performs the requested operation, prints the output and exits. When you run the
docker ps command, you see the container in an exited state. The return code of the
operation performed is shown in the bracket as well. In this case since the task was
completed successfully, the return code is zero.

270

KodeKloud.com

Kubernetes

kubectl create –f pod-definition.yaml

NAME READY STATUS RESTARTS AGE
math-pod 0/1 Completed 0 1d

kubectl get pods

12

pod-definition.yaml

apiVersion: v1

kind: Pod

metadata:

name: math-pod

spec:

containers:

- name: math-add

image: ubuntu

command: ['expr', '3', ‘+', ‘2']
3 2 5

3

2 53

2 5

Running 3

Let us replicate the same with Kubernetes. We will create a pod definition to perform
the same operation. When the pod is created, it runs a container performs the
computation task and exits and the pod goes into a Completed state. But, It then
recreates the container in an attempt to leave it running. Again the container
performs the required computation task and exits. And kubernetes brings it up again.
And this continuous to happen until a threshold is reached. So why does that
happen?

271

KodeKloud.com

RestartPolicy pod-definition.yaml

apiVersion: v1

kind: Pod

metadata:

name: math-pod

spec:

containers:

- name: math-add

image: ubuntu

command: ['expr', '3', ‘+', ‘2’]

restartPolicy: AlwaysNever

3 2 5

Kubernetes wants your applications to live forever. The default behavior of PODs is to
attempt to restart the container in an effort to keep it running. This behavior is
defined by the property restartPolicy set on the POD, which is by default set to
Always. And that is why the POD ALWAYS recreates the container when it exits. You
can override this behavior by setting this property to Never or OnFailure. That way
Kubernetes does not restart the container once the job is finished. Now, that works
just fine.

272

KodeKloud.com

RestartPolicy

5 0
54 6

5

3 1
5

3 2 5

2 2

7 3

2 1

5 4

8 6

8 9
3 5
1 3

We have new use cases for batch processing. We have large data sets that requires
multiple pods to process the data in parallel. We want to make sure that all PODs
perform the task assigned to them successfully and then exit. So we need a manager
that can create as many pods as we want to get a work done and ensure that the
work get done successfully.

273

KodeKloud.com

Kubernetes Jobs

Jobs
ReplicaSet

That is what JOBs in Kubernetes do. But we have learned about ReplicaSets helping us
creating multiple PODs. While a ReplicaSet is used to make sure a specified number
of PODs are running at all times, a Job is used to run a set of PODs to perform a given
task to completion. Let us now see how we can create a job.

274

KodeKloud.com

Job Definition
pod-definition.yaml

apiVersion: v1

kind: Pod

metadata:

name: math-pod

job-definition.yaml

apiVersion:

kind:

metadata:

spec:

template:

batch/v1

Job

name: math-add-job

spec:

containers:

- name: math-add

image: ubuntu

command: ['expr', '3', ‘+', ‘2’]

restartPolicy: Never

We create a JOB using a definition file. So we will start with a pod definition file. To
create a job using it, we start with the blank template that has apiVersion, kind,
metadata and spec. The apiVersion is batch/v1 as of today. But remember to verify
this against the version of Kubernetes release that you are running on. The kind is Job
of course. We will name it math-add-job. Then under the spec section, just like in
replicasets or deployments, we have template. And under template we move all of
the content from pod definition specification.

275

KodeKloud.com

Create, View & Delete
job-definition.yaml

apiVersion:

kind:

metadata:

spec:

template:

batch/v1

Job

name: math-add-job

spec:

containers:

- name: math-add

image: ubuntu

command: ['expr', '3', ‘+', ‘2’]

restartPolicy: Never

kubectl create –f job-definition.yaml

NAME DESIRED SUCCESSFUL AGE
math-add-job 1 1 38s

kubectl get jobs

NAME READY STATUS RESTARTS AGE
math-add-job-l87pn 0/1 Completed 0 2m

kubectl get pods

5

kubectl logs math-add-job-ld87pn

job.batch "math-add-job" deleted

kubectl delete job math-add-job

Once done create the job using the kubectl create command. Once created, use the
kubectl get jobs command to see the newly created job. We now see that the job was
created and was completed successfully. To see the pods created by the kubectl get
pods command you run kubectl get pods command. We see that it is in a completed
state with 0 Restarts, indicating that kubernetes did not try to restart the pod.
Perfect! But, what about the output of the job? In our case, we just had the addition
performed on the command line inside the container. So the output should be in the
pods standard output. The standard output of a container can be seen using the logs
command. So we run the kubectl logs command with the name of the pod to see the
output. Finally, to delete the job, runthe kubecl delete job command. Deleting the
job will also result in deleting the pods that were created by the job.

Now, I hope you realize that this example was made simple so we understand what
jobs are and of course this is not typically how jobs are implemented in the real
world. For example, if the job was created to process an image, the processed image
stored in a persistent volume would be the output or if the job was to generate and
email a report, then the email with the report would be the result of the job. So I
hope you get the gist of it. And for the sake of understanding jobs, we will continue
with this example.

276

KodeKloud.com

Multiple Pods
job-definition.yaml

apiVersion:

kind:

metadata:

spec:

template:

batch/v1

Job

name: math-add-job

spec:

containers:

- name: math-add

image: ubuntu

command: ['expr', '3', ‘+', ‘2’]

restartPolicy: Never

completions: 3

kubectl create –f job-definition.yaml

NAME DESIRED SUCCESSFUL AGE
math-add-job 3 0 38s

kubectl get jobs

NAME READY STATUS RESTARTS AGE
math-add-job-25j9p 0/1 Completed 0 2m

kubectl get pods

math-add-job-87g4m 0/1 Completed 0 2m

math-add-job-d5z95 0/1 Completed 0 2m

123

Jobs

So we just ran one instance of the pod in the previous example. To run multiple pods,
we set a value for completions under the job specification. And we set it to 3 to run 3
PODs. This time, when we create the job, We see the Desired count is 3, and the
successful count is 0. Now, by default, the PODs are created one after the other. The
second pod is created only after the first is finished.

277

KodeKloud.com

Multiple Pods
job-definition.yaml

apiVersion:

kind:

metadata:

spec:

template:

batch/v1

Job

name: random-error-job

completions: 3

spec:

containers:

- name: random-error

image: kodekloud/random-error

restartPolicy: Never

kubectl create –f job-definition.yaml

NAME DESIRED SUCCESSFUL AGE
random-error-job 3 0 38s

kubectl get jobs

NAME READY STATUS RESTARTS
random-exit-job-ktmtt 0/1 Completed 0

kubectl get pods

random-exit-job-sdsrf 0/1 Error 0

random-exit-job-wwqbn 0/1 Completed 0

123

random-exit-job-fkhfn 0/1 Error 0

random-exit-job-fvf5t 0/1 Error 0

random-exit-job-nmghp 0/1 Completed 0

Jobs

That was straight forward. But what if the pods fail? For example, I am now going to
create a job using a different image called random-error. It’s a simple docker image
that randomly completes or fails. When I create this job, first pod completes
successfully, the second one fails, so a third one is created and that completes
successfully and the fourth one fails, and so does the fifth one and so to have 3
completions, the job creates a new pod which happen to complete successfully. And
that completes the job.

278

KodeKloud.com

Parallelism
job-definition.yaml

apiVersion:

kind:

metadata:

spec:

template:

batch/v1

Job

name: random-error-job

completions: 3

spec:

containers:

- name: random-error

image: kodekloud/random-error

restartPolicy: Never

kubectl create –f job-definition.yaml

NAME DESIRED SUCCESSFUL AGE
random-error-job 3 0 38s

kubectl get jobs

NAME READY STATUS RESTARTS
random-exit-job-ktmtt 0/1 Completed 0

kubectl get pods

random-exit-job-sdsrf 0/1 Error 0

random-exit-job-wwqbn 0/1 Completed 0

123

random-exit-job-fkhfn 0/1 Error 0

random-exit-job-fvf5t 0/1 Error 0

random-exit-job-nmghp 0/1 Completed 0

Jobs

parallelism: 3

Instead of getting the pods created sequentially we can get them created in parallel.
For this add a property called parallelism to the job specification. We set it to 3 to
create 3 pods in parallel. So the job first creates 3 pods at once. Two of which
completes successfully. So we only need one more, so it’s intelligent enough to create
one pod at a time until we get a total of 3 completed pods.

<Mention demo if built>

Well that’s it for this lecture. Head over to the coding quiz and have fun playing
around with jobs. I will see you in the next lecture.

279

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

Let us now look at Rolling Updates & Rollbacks in Deployments.

280

KodeKloud.com

281

CronJobs

Let us now look at CronJobs in Kubernetes.

281

KodeKloud.com

apiVersion:

kind:

metadata:

spec:

CronJob
job-definition.yaml

apiVersion:

kind:

metadata:

batch/v1

Job

name: reporting-job

spec:

completions: 3

parallelism: 3

template:

spec:

containers:

- name: reporting-tool

image: reporting-tool

restartPolicy: Never

cron-job-definition.yaml

batch/v1beta1

CronJob

name: reporting-cron-job

schedule: “*/1 * * * *”

jobTemplate:

Wikipedia

A cronjob is a job that can be scheduled. Just like cron tab in Linux, if you are familiar
with it. Say for example you have a job that generates a report and sends an email.
You can create the job using the kubectl create command, but it runs instantly.
Instead you could create a cronjob to schedule and run it periodically. To create a
cronjob we start with a blank template. The apiVersion as of today is batch/v1beta1.
The kind is CronJob with a capital C and J. I will name it reporting-cron-job. Under
spec you specify a schedule. The schedule option takes a cron like format string
where you can specify the time when the job is to be run. Then you have the Job
Template, which is the actual job that should be run. Move all of the content from
the spec section of the job definition under this. Notice that the cron job definition
now gets a little complex. So you must be extra careful. There are now 3 spec
sections, one for the cron-job, one for the job and one for the pod.

282

KodeKloud.com

Create CronJob

kubectl create –f cron-job-definition.yaml

NAME SCHEDULE SUSPEND ACTIVE
reporting-cron-job */1 * * * * False 0

kubectl get cronjob

apiVersion:

kind:

metadata:

spec:

cron-job-definition.yaml

batch/v1beta1

CronJob

name: reporting-cron-job

schedule: “*/1 * * * *”

jobTemplate:

spec:

completions: 3

parallelism: 3

template:

spec:

containers:

- name: reporting-tool

image: reporting-tool

restartPolicy: Never

Once the file is ready run the kubectl create command to create the cron-job and run
the kubectl get cronjob command to see the newly created job. It would inturn create
the required jobs and pods.

283

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Labels, Selectors and Annotations

Rolling Updates & Rollbacks in Deployments

Jobs and CronJobs

Well that’s it for this lecture, and I will see you in the next lecture.

284

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743697

285

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Understand Services

Network Policies

Understand Ingress

Hello and welcome to this lecture. We are going through the Certified Kubernetes
Application Developers course. Services were discussed in the beginners course, so
nothing more to add here. Checkout the practice tests.

286

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743699

287

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Understand Services

Network Policies

Understand Ingress

Hello and welcome to this lecture. We are going through the Certified Kubernetes
Application Developers course and in this lecture we will discuss about Ingress in
Kubernetes.

288

KodeKloud.com

289

INGRESS

So let’s get started

289

KodeKloud.com

www.my-online-store.com

Let us first briefly revisit services and work our way towards ingress. We will start
with a simple scenario. You are deploying an application on Kubernetes for a
company that has an online store selling products. Your application would be
available at say my-online-store.com.

290

KodeKloud.com

www.my-online-store.com

POD

Deployment

wear

MySQL
Service

mysql-service (ClusterIP)

wear-service (NodePort)

38080

http://<node-ip>:38080

wear wear

You build the application into a Docker Image and deploy it on the kubernetes cluster
as a POD in a Deployment. Your application needs a database so you deploy a MySQL
database as a POD and create a service of type ClusterIP called mysql-service to make
it accessible to your application. Your application is now working. To make the
application accessible to the outside world, you create another service, this time of
type NodePort and make your application available on a high-port on the nodes in
the cluster. In this example a port 38080 is allocated for the service. The users can
now access your application using the URL: http, colon, slash slash IP of any of your
nodes followed by port 38080. That setup works and users are able to access the
application.

Whenever traffic increases, we increase the number of replicas of the POD to handle
the additional traffic, and the service takes care of splitting traffic between the PODs.

<pause>
However, if you have deployed a production grade application before, you know that
there are many more things involved in addition to simply splitting the traffic
between the PODs.

291

KodeKloud.com

www.my-online-store.com

wear

wear-service (NodePort)

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

For example, we do not want the users to have to type in IP address everytime. So
you configure your DNS server to point to the IP of the nodes. Your users can now
access your application using the URL http://my-online-store.com:38080.

292

KodeKloud.com

www.my-online-store.com

wear

wear-service (NodePort)

38080

http://<node-ip>:38080

wear wear

<node-ip>

http://my-online-store.com:38080

proxy-server

proxy-server

http://my-online-store.com

Now, you don’t want your users to have to remember port number either. However,
Service NodePorts can only allocate high numbered ports which are greater than
30,000. So you then bring in an additional layer between the DNS server and your
cluster, like a proxy server, that proxies requests on port 80 to port 38080 on your
nodes. You then point your DNS to this server, and users can now access your
application by simply visiting my-online-store.com.

Now, this is if your application is hosted on-prem in your datacenter.

293

KodeKloud.com

www.my-online-store.com

wear

wear-service (NodePort)

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

wear-service (LoadBalancer)

Let’s take a step back and see what you could do it you were on a public cloud
environment like Google Cloud Platform.

In that case, instead of creating a service of type NodePort for your wear application,
you could set it to type LoadBalancer. When you do that Kubernetes would still do
everything that it has to do for a NodePort, which is to provision a high port for the
service, but in addition to that kubernetes also sends a request to Google Cloud
Platform to provision a native load balancer for this service. GCP would then
automatically deploy a LoadBalancer configured to route traffic to the service ports
on all the nodes and return its information to kubernetes. The LoadBalancer has an
external IP that can be provided to users to access the application. In this case we set
the DNS to point to this IP and users access the application using the URL.

294

KodeKloud.com

wear-service (LoadBalancer)

www.my-online-store.com

wear

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

gcp load-balancer

gcp load-balancer

http://my-online-store.com

On receiving the request, GCP would then automatically deploy a LoadBalancer
configured to route traffic to the service ports on all the nodes and return its
information to kubernetes. The LoadBalancer has an external IP that can be provided
to users to access the application. In this case we set the DNS to point to this IP and
users access the application using the URL my-online-store.com. Perfect!!

295

KodeKloud.com

www.my-online-store.com www.my-online-store.com/watchwww.my-online-store.com/wear

Your companies business grows and you now have new services for your customers.
For example, a video streaming service. You want your users to be able to access your
new video streaming service by going to my-online-store.com/watch. You’d like to
make your old application accessible at my-online.store.com / wear.

296

KodeKloud.com

wear-service (LoadBalancer)

www.my-online-store.com

wear

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

gcp load-balancer

gcp load-balancer

http://my-online-store.com

VideoVideo Video

video-service (LoadBalancer)

38282

gcp load-balancer-2

Your developers developed the new video streaming application as a completely
different application, as it has nothing to do with the existing one. However to share
the cluster resources, you deploy the new application as a separate deployment
within the same cluster. You create a service called video-service of type
LoadBalancer. Kubernetes provisions port 38282 for this service and also provisions a
cloud native LoadBalancer. The new load balancer has a new IP. Remember you must
pay for each of these load balancers and having many such load balancers can
inversely affect your cloud bill.

So how do you direct traffic between each of these load balancers based on URL?

297

KodeKloud.com

wear-service (LoadBalancer)

www.my-online-store.com

wear

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

gcp load-balancer

gcp load-balancer

http://my-online-store.com

VideoVideo Video

video-service (LoadBalancer)

38282

gcp load-balancer-2

/apparel -> gcp load-balancer
/video -> gcp load-balancer-2yet another load-balancer

yet another load-balancer

https://my-online-store.com

You need yet another proxy or load balancer that can re-direct traffic based on URLs
to the different services. Every time you introduce a new service you have to re-
configure the load balancer.

And finally you also need to enable SSL for your applications, so your users can access
your application using https. Where do you configure that?

Now that’s a lot of different configuration and all of these becomes difficult to
manage when your application scales. It requires involving different individuals in
different teams. You need to configure your firewall rules for each new service. And
its expensive as well, as for each service a new cloud native load balancer will be
provisioned.

298

KodeKloud.com

wear-service (LoadBalancer)

www.my-online-store.com

wear

38080

http://<node-ip>:38080

<node-ip>

http://my-online-store.com:38080

wear wear

gcp load-balancer

gcp load-balancer

http://my-online-store.com

VideoVideo Video

video-service (LoadBalancer)

38282

gcp load-balancer-2

/apparel -> gcp load-balancer
/video -> gcp load-balancer-2yet another load-balancer

yet another load-balancer

https://my-online-store.com

Wouldn’t it be nice if you could manage all of that within the Kubernetes cluster, and
have all that configuration as just another kubernetes definition file, that lives along
with the rest of your application deployment files?

299

KodeKloud.com

wear-service (LoadBalancer)

38080

load-balancer

video-service (LoadBalancer)

38282

load-balancer-2

/apparel -> load-balancer
/video -> load-balancer-2

yet another load-balancer

Ingress

That’s where Ingress comes into play. Ingress helps your users access your
application using a single Externally accessible URL, that you can configure to route to
different services within your cluster based on the URL path, at the same time
terminate TLS.

300

KodeKloud.com

wear-service

wearwear wear VideoVideo Video

video-service

Ingress

I N G R E S S

Simply put, think of ingress as a layer 7 load balancer built-in to the kubernetes
cluster that can be configured using native kubernetes primitives just like any other
object in kubernetes.

301

KodeKloud.com

wear-service

wearwear wear VideoVideo Video

video-service

Ingress

I N G R E S S

38080

ingress-service (NodePort)ingress-service (LoadBalancer)

Now remember, even with Ingress you still need to expose it to make it accessible
outside the cluster. So you still have to either publish it as a NodePort or with a Cloud
Native LoadBalancer. But that is just a one time thing. Going forward you are going to
perform all your load balancing, Auth, SSL and URL based routing configurations on
the Ingress controller.

302

KodeKloud.com

Ingress

I N G R E S S

1. Deploy

2. Configure

INGRESS CONTROLLER

INGRESS RESOURCES

So how does it work? What is it? Where is it? How can you see it? How can you
configure it?

So how does it load balance? How does it implement SSL?

Without ingress, how would YOU do all of these? I would use a reverse-proxy or a
load balancing solution like NGINX or HAProxy or Traefik. I would deploy them on my
kubernetes cluster and configure them to route traffic to other services. The
configuration involves defining URL Routes, SSL certificates etc.

Ingress is implemented by Kubernetes in the same way. You first deploy a supported
solution, which happens to be any of these listed here, and then specify a set of rules
to configure Ingress. The solution you deploy is called as an Ingress Controller. And
the set of rules you configure is called as Ingress Resources. Ingress resources are
created using definition files like the ones we used to create PODs, Deployments and
services earlier in this course.

Now remember a kubernetes cluster does NOT come with an Ingress Controller by
default. If you setup a cluster following the demos in this course, you won’t have an

303

ingress controller. So if you simply create ingress resources and expect them to work,
they wont.

Let’s look at each of these in a bit more detail now.

303

KodeKloud.com

INGRESS CONTROLLER

GCP HTTP(S)
Load Balancer (GCE)

Contour

Istio

Let’s look at each of these in a bit more detail now. As I mentioned you do not have
an Ingress Controller on Kubernetes by default. So you MUST deploy one. What do
you deploy? There are a number of solutions available for Ingress, a few of them
being GCE - which is Googles Layer 7 HTTP Load Balancer. NGINX, Contour, HAPROXY,
TRAFIK and Istio. Out of this, GCE and NGINX are currently being supported and
maintained by the Kubernetes project. And in this lecture we will use NGINX as an
example.

304

KodeKloud.com

INGRESS CONTROLLER
apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx-ingress-controller

spec:

replicas: 1

selector:

matchLabels:

name: nginx-ingress

template:

metadata:

labels:

name: nginx-ingress

spec:

containers:

- name: nginx-ingress-controller

image: quay.io/kubernetes-ingress-

controller/nginx-ingress-controller:0.21.0

args:

- /nginx-ingress-controller

ConfigMap
nginx-configuration

- --configmap=$(POD_NAMESPACE)/nginx-configuration

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx-configuration

And in this lecture we will use NGINX as an example. An NGINX Controller is deployed
as just another deployment in Kubernetes. So we start with a deployment file
definition, named nginx-ingress-controller. With 1 replica and a simple pod definition
template. We will label it nginx-ingress and the image used is nginx-ingress-controller
with the right version. This is a special build of NGINX built specifically to be used as
an ingress controller in kubernetes. So it has its own requirements. Within the image
the nginx program is stored at location /nginx-ingress-controller. So you must pass
that as the command to start the nginx-service. If you have worked with NGINX
before, you know that it has a set of configuration options such as the path to store
the logs, keep-alive threshold, ssl settings, session timeout etc. In order to decouple
these configuration data from the nginx-controller image, you must create a
ConfigMap object and pass that in. Now remember the ConfigMap object need not
have any entries at this point. A blank object will do. But creating one makes it easy
for you to modify a configuration setting in the future. You will just have to add it in to
this ConfigMap.

305

KodeKloud.com

INGRESS CONTROLLER
metadata:

name: nginx-ingress-controller

spec:

replicas: 1

selector:

matchLabels:

name: nginx-ingress

template:

metadata:

labels:

name: nginx-ingress

spec:

containers:

- name: nginx-ingress-controller

image: quay.io/kubernetes-ingress-

controller/nginx-ingress-controller:0.21.0

args:

- /nginx-ingress-controller

ConfigMap
nginx-configuration

- --configmap=$(POD_NAMESPACE)/nginx-configuration

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx-configuration

env:

- name: POD_NAME

valueFrom:

fieldRef:

fieldPath: metadata.name

- name: POD_NAMESPACE

valueFrom:

fieldRef:

fieldPath: metadata.namespace

You must also pass in two environment variables that carry the POD’s name and
namespace it is deployed to. The nginx service requires these to read the
configuration data from within the POD.

306

KodeKloud.com

INGRESS CONTROLLER

containers:

- name: nginx-ingress-controller

image: quay.io/kubernetes-ingress-

controller/nginx-ingress-controller:0.21.0

args:

- /nginx-ingress-controller

ConfigMap
nginx-configuration

- --configmap=$(POD_NAMESPACE)/nginx-configuration

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx-configuration

env:

- name: POD_NAME

valueFrom:

fieldRef:

fieldPath: metadata.name

- name: POD_NAMESPACE

valueFrom:

fieldRef:

fieldPath: metadata.namespace

ports:

- name: http

containerPort: 80

- name: https

containerPort: 443

And finally specify the ports used by the ingress controller.

307

KodeKloud.com

INGRESS CONTROLLER

ConfigMap
nginx-configuration

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx-configuration

fieldRef:

fieldPath: metadata.namespace

ports:

- name: http

containerPort: 80

- name: https

containerPort: 443

apiVersion: v1

kind: Service

metadata:

name: nginx-ingress

spec:

type: NodePort

ports:

- port: 80

targetPort: 80

protocol: TCP

name: http

- port: 443

targetPort: 443

protocol: TCP

name: https

selector:

name: nginx-ingress

We then need a service to expose the ingress controller to the external world. So we
create a service of type NodePort with the nginx-ingress label selector to link the
service to the deployment. So with these three objects we should be ready with an
ingress controller in its simplest form.

308

KodeKloud.com

INGRESS CONTROLLER

ConfigMap
nginx-configuration

kind: ConfigMap

apiVersion: v1

metadata:

name: nginx-configuration

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: nginx-ingress-controller

spec:

replicas: 1

selector:

matchLabels:

name: nginx-ingress

template:

metadata:

labels:

name: nginx-ingress

spec:

containers:

- name: nginx-ingress-controller

image: quay.io/kubernetes-ingress-

controller/nginx-ingress-

controller:0.21.0args:

- /nginx-ingress-controller

- --configmap=$(POD_NAMESPACE)/nginx-configuration

env:

- name: POD_NAME

valueFrom:

fieldRef:

fieldPath: metadata.name

- name: POD_NAMESPACE

valueFrom:

fieldRef:

fieldPath: metadata.namespace

ports:

- name: http

containerPort: 80

- name: https

containerPort: 443

apiVersion: v1

kind: Service

metadata:

name: nginx-ingress

spec:

type: NodePort

ports:

- port: 80

targetPort: 80

protocol: TCP

name: http

- port: 443

targetPort: 443

protocol: TCP

name: https

selector:

name: nginx-ingress

Deployment
Service

ConfigMap

So with these three objects we should be ready with an ingress controller in its
simplest form.

309

KodeKloud.com

INGRESS RESOURCE

wear wear VID

www.my-online-store.com www.my-online-store.com

/wear /watch

wear VID

wear.my-online-store.com watch.my-online-store.com

Now on to the next part, of creating Ingress Resources. An Ingress Resource is a set of
rules and configurations applied on the ingress controller. You can configure rules to
say, simply forward all incoming traffic to a single application, or route traffic to
different applications based on the URL. So if user goes to my-online-store.com/wear,
then route to one app, or if the user visits the /watch URL then route to the video
app. Or you could route user based on the domain name itself.

310

KodeKloud.com

INGRESS RESOURCE

wear

www.my-online-store.com

apiVersion:

kind:

metadata:

name:

spec:

extensions/v1beta1

Ingress

ingress-wear

Ingress-wear.yaml

Let us look at how to configure these in a bit more detail. The Ingress Resource is
created with a Kubernetes Definition file. In this case, ingress-wear.yaml. As with any
other object, we have apiVersion, kind, metadata and spec. The apiVersion is
extensions/v1beta1, kind is Ingress, we will name it ingress-wear. And under spec we
have backend.

311

KodeKloud.com

INGRESS RESOURCE

wear

www.my-online-store.com

apiVersion:

kind:

metadata:

name:

spec:

backend:

serviceName:

servicePort:

extensions/v1beta1

Ingress

ingress-wear

wear-service

80

Ingress-wear.yaml

wear-service
kubectl create –f Ingress-wear.yaml

ingress.extensions/ingress-wear created

kubectl get ingress

NAME HOSTS ADDRESS PORTS
ingress-wear * 80 2s

As you might have guessed already, traffic is routed to the application services and
not PODs directly. The Backend section defines where the traffic will be routed to. So
if it’s a single backend, then you don’t really have any rules. You can simply specify
the service name and port of the backend wear service. Create the ingress resource
by running the kubectl create command. View the created ingress by running the
kubectl get ingress command. The new ingress is now created and routes all
incoming traffic directly to the wear-service.

312

KodeKloud.com

INGRESS RESOURCE - RULES

www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2 Rule 3

Everything Else

Rule 4

You use rules, when you want to route traffic based on different conditions. For
example, you create one rule for traffic originating from each domain or hostname.
That means when users reach your cluster using the domain name, my-online-
store.com, you can handle that traffic using rule1. When users reach your cluster
using domain name wear.my-online-store.com, you can handle that traffic using a
separate Rule2. Use Rule3 to handle traffic from watch.my-online-store.com. And say
use a 4th rule to handle everything else. And you would achieve this, by adding
multiple DNS entries, all of which would point to the same Ingress controller service
on your kubernetes cluster.

313

KodeKloud.com

INGRESS RESOURCE - RULES

www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2 Rule 3

Everything Else

Rule 4

DNS Name Forward IP

www.my-online-store.com 10.123.23.12 (INGRESS SERVICE)

www.wear.my-online-store.com 10.123.23.12

www.watch.my-online.store.com 10.123.23.12

www.my-wear-store.com 10.123.23.12

www.my-watch-store.com 10.123.23.12

And just in case you didn’t know, you would typically achieve this, by adding multiple
DNS entries, all pointing to the same Ingress controller service on your kubernetes
cluster.

314

KodeKloud.com

INGRESS RESOURCE - RULES
www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2 Rule 3

Everything Else

Rule 4

Path /wear

Path /watch

http://www.my-online-store.com/wear

http://www.my-online-store.com/watch

Path /

http://www.my-online-store.com/listen

Now within each rule you can handle different paths. For example, within Rule 1 you
can handle the wear path to route that traffic to the clothes application. And a watch
path to route traffic to the video streaming application. And a third path that routes
anything other than the first two to a 404 not found page.

315

KodeKloud.com

INGRESS RESOURCE - RULES
www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2

Everything Else

Path /wear

Path /watch

http://www.my-online-store.com/wear

http://www.my-online-store.com/watch

Path /

http://www.my-online-store.com/listen

Path /

Path /returns

http://www.wear.my-online-store.com/

http://www.wear.my-online-store.com/returns

Rule 3 Rule 4

Path /support

http://www.wear.my-online-store.com/support

Similarly, the second rule handles all traffic from wear.my-online-store.com. You can
have path definition within this rule, to route traffic based on different paths. For
example, say you have different applications and services within the apparel section
for shopping, or returns, or support, when a user goes to wear.my-online.store.com/,
by default they reach the shopping page. But if they go to exchange or support, they
reach different backend services.

316

KodeKloud.com

INGRESS RESOURCE - RULES
www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2

Everything Else

Path /wear

Path /watch

http://www.my-online-store.com/wear

http://www.my-online-store.com/watch

Path /

http://www.my-online-store.com/listen

Path /

Path /returns

http://www.wear.my-online-store.com/

http://www.wear.my-online-store.com/returns

Rule 3 Rule 4

Path /support

http://www.wear.my-online-store.com/support

Path /

Path /movies

http://www.watch.my-online-store.com/

http://www.watch.my-online-store.com/movies

Path /tv

http://www.watch.my-online-store.com/tv

The same goes for Rule 3, where you route traffic to watch.my-online-store.com to
the video streaming application. But you can have additional paths in it such as
movies or tv.

317

KodeKloud.com

INGRESS RESOURCE - RULES
www.my-online-store.com www.wear.my-online-store.com www.watch.my-online-store.com

Rule 1 Rule 2

Everything Else

Path /wear

Path /watch

http://www.my-online-store.com/wear

http://www.my-online-store.com/watch

Path /

http://www.my-online-store.com/listen

Path /

Path /returns

http://www.wear.my-online-store.com/

http://www.wear.my-online-store.com/returns

Rule 3 Rule 4

Path /support

http://www.wear.my-online-store.com/support

Path /

Path /movies

http://www.watch.my-online-store.com/

http://www.watch.my-online-store.com/movies

Path /tv

http://www.watch.my-online-store.com/tv

Path /

http://www.listen.my-online-store.com/

http://www.eat.my-online-store.com/

http://www.drink.my-online-store.com/tv

And finally anything other than the ones listed will got to the 4th Rule, that would
simply show a 404 Not Found Error page. So remember, you have rules at the top for
each host or domain name. And within each rule you have different paths to route
traffic based on the URL.

318

KodeKloud.com

INGRESS RESOURCE

wear VID

www.my-online-store.com

/wear /watch

apiVersion:

kind:

metadata:

name:

spec:

backend:

serviceName:

servicePort:

extensions/v1beta1

Ingress

ingress-wear

wear-service

80

Ingress-wear.yaml

apiVersion:

kind:

metadata:

name:

spec:

extensions/v1beta1

Ingress

ingress-wear-watch

Ingress-wear-watch.yaml

rules:

- http:

paths:

- path: /wear

- path: /watch

backend:

serviceName: wear-service

servicePort: 80

backend:

serviceName: watch-service

servicePort: 80

Now, let’s look at how we configure ingress resources in Kubernetes. We will start
where we left off. We start with a similar definition file. This time under spec, we
start with a set of rules. Now our requirement here is to handle all traffic coming to
my-online-store.com and route them based on the URL path. So we just need a single
Rule for this, since we are only handling traffic to a single domain name, which is my-
online-store.com in this case. Under rules we have one item, which is an http rule in
which we specify different paths. So paths is an array of multiple items. One path for
each url. Then we move the backend we used in the first example under the first
path. The backend specification remains the same, it has a servicename and
serviceport. Similarly we create a similar backend entry to the second URL path, for
the watch-service to route all traffic to the /watch url to the watch-service. Create
the ingress resource using the kubectl create command.

319

KodeKloud.com

kubectl describe ingress ingress-wear-watch

Name: ingress-wear-watch
Namespace: default
Address:
Default backend: default-http-backend:80 (<none>)
Rules:

Host Path Backends
---- ---- --------
*

/wear wear-service:80 (<none>)
/watch watch-service:80 (<none>)

Annotations:
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal CREATE 14s nginx-ingress-controller Ingress default/ingress-wear-watch

INGRESS RESOURCE

Once created, view additional details about the ingress by running the kubectl
describe ingress command. You now see two backend URLs under the rules, and the
backend service they are pointing to. Just as we created it.

Now, If you look closely in the output of this command, you see that there is
something about a Default-backend. Hmmm. What might that be?

If a user tries to access a URL that does not match any of these rules, then the user is
directed to the service specified as the default backend. In this case it happens to be
a service named default-http-backend. So you must remember to deploy such a
service.

320

KodeKloud.com

www.my-online-store.com www.my-online-store.com/watchwww.my-online-store.com/wear

www.my-online-store.com/eat

www.my-online-store.com/listen

INGRESS RESOURCE

Back in your application, say a user visits the URL my-online-store.com/listen or /eat
and you don’t have an audio streaming or a food delivery service, you might want to
show them a nice message. You can do this by configuring a default backend service
to display this 404 Not Found error page.

321

KodeKloud.com

WEAR VIDEO

wear.my-online-store.com watch.my-online-store.com

INGRESS RESOURCE

apiVersion:

kind:

metadata:

name:

spec:

extensions/v1beta1

Ingress

ingress-wear-watch

Ingress-wear-watch.yaml

rules:

-

http:

paths:

- backend:

serviceName: wear-service

servicePort: 80

-

http:

paths:

- backend:

serviceName: watch-service

servicePort: 80

host: wear.my-online-store.com

host: watch.my-online-store.com

The third type of configuration is using domain names or hostnames. We start by
creating a similar definition file for Ingress. Now that we have two domain names, we
create two rules. One for each domain. To split traffic by domain name, we use the
host field. The host field in each rule matches the specified value with the domain
name used in the request URL and routes traffic to the appropriate backend. In this
case note that we only have a single backend path for each rule. Which is fine. All
traffic from these domain names will be routed to the appropriate backend
irrespective of the URL Path used. You can still have multiple path specifications in
each of these to handle different URL paths.

322

KodeKloud.com

INGRESS RESOURCE

apiVersion:

kind:

metadata:

name:

spec:

extensions/v1beta1

Ingress

ingress-wear-watch

Ingress-wear-watch.yaml

rules:

-

http:

paths:

- backend:

serviceName: wear-service

servicePort: 80

-

http:

paths:

- backend:

serviceName: watch-service

servicePort: 80

host: wear.my-online-store.com

host: watch.my-online-store.com

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

name: ingress-wear-watch

spec:

rules:

- http:

paths:

- path: /wear

backend:

serviceName: wear-service

servicePort: 80

- path: /watch

backend:

serviceName: watch-service

servicePort: 80

Ingress-wear-watch.yaml

Let’s compare the two. Splitting traffic by URL had just one rule and we split the
traffic with two paths. To split traffic by hostname, we used two rules and one path
specification in each rule.

323

KodeKloud.com

Bare-metal Considerations
https://kubernetes.github.io/ingress-nginx/deploy/baremetal/

https://github.com/kubernetes/ingress-gce/blob/master/README.md

https://kubernetes.github.io/ingress-nginx/deploy/

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/

324

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Understand Services

Network Policies

Hello and welcome to this lecture on Network Policies.

325

KodeKloud.com

326

Network
Policies

326

KodeKloud.com

Traffic

80

3306

API5000

So let us first get our networking and security basics right. And I am sorry if this is too
basic, but I just wanted to spend a minute on this to make sure we are all on the
same page before we begin. We will start with a simple example of a traffic through a
web, app and database server. So you have a web server serving front-end to users,
an app server serving backend API’s and a database server. The user sends in a
request to the web server at port 80. The web server then sends a request to the API
server at port 5000 in the backend. The API server then fetches data from the
database server at port 3306. And then sends the data back to the user. A very
simple setup.

327

KodeKloud.com

Ingress & Egress

80

3306

Ingress

Egress
API5000

So there are two types of traffic here. Ingress and Egress. For example, for a web
server, the incoming traffic from the users is an Ingress Traffic. And the outgoing
requests to the app server is Egress traffic. And that is denoted by the straight arrow.
When you define ingress and egress, remember you are only looking at the direction
in which the traffic originated. The response back to the user, denoted by the dotted
lines do not really matter.

328

KodeKloud.com

Ingress & Egress

80

3306

API5000
Ingress

Egress

Ingress

Egress

Similarly, in case of the backend API server, it receives ingress traffic from the web
server on port 80 and has egress traffic to port 3306 to the database server.

329

KodeKloud.com

Ingress & Egress

80

3306

API5000

Ingress

Ingress

Egress Ingress

Egress

And from the database servers perspective, it receives Ingress traffic on port 3306
from the API server.

330

KodeKloud.com

Traffic

80

3306Ingress

Ingress

Egress 5000

1

2

3 API5000Ingress

Egress 33064

5

If we were to list the rules required to get this working, we would have an Ingress rule
that is required to accept HTTP traffic on port 80 on the web server. An Egress rule to
allow traffic from the web server to port 5000 on the API server. An ingress rule to
accept traffic on port 5000 on the API server and an egress rule to allow traffic to port
3306 on the database server. And finally an ingress rule on the database server to
accept traffic on port 3306. So that’s traffic flow and rules basics.

331

KodeKloud.com

192.168.1.11

Node1
192.168.1.12

Node2

192.168.1.13

Node3

Network Security

10.244.1.3 10.244.1.4 10.244.2.3 10.244.2.4 10.244.3.3 10.244.3.4

10.244.1.5 10.244.2.5 10.244.3.5

Let us now look at Network Security in Kubernetes. So we have a cluster with a set of
nodes hosting a set of pods and services. Each node has an IP address and so does
each pod as well as service. One of the pre-requisite for networking in kubernetes, is
whatever solution you implement, the pods should be able to communicate with
each other without having to configure any additional settings, like routes.

332

KodeKloud.com

192.168.1.11

Node1
192.168.1.12

Node2

192.168.1.13

Node3

Network Security

10.244.1.3 10.244.1.4 10.244.2.3 10.244.2.4 10.244.3.3 10.244.3.4

10.244.1.5 10.244.2.5 10.244.3.5

“All Allow”

For example, in this network solution, all pods are on a virtual private network that
spans across the nodes in the kubernetes cluster. And they can all by default reach
each other using the IPs or pod names or services configured for that purpose.
Kubernetes is configured by default with an “All Allow” rule that allows traffic from
any pod to any other pod or services.

333

KodeKloud.com

Traffic

80

3306

API5000Web
Pod

API
Pod

DB
Pod

Let us now bring back our earlier discussion and see how it fits in to kubernetes. For
each component in the application we deploy a POD. One for the front-end web
server, for the API server and one for the database. We create services to enable
communication between the PODs as well as to the end user. Based on what we
discussed in the previous slide, by default all the three PODs can communicate with
each other within the kubernetes cluster.

What if we do not want the front-end web server to be able to communicate with the
database server directly? Say for example, the security teams and audits require you
to prevent that from happening? That is where you would implement a Network
Policy to allow traffic to the db server only from the api server. Let’s see how we do
that.

334

KodeKloud.com

Network Policy

80

3306

5000Web
Pod

API
Pod

DB
PodNetwork

Policy

A Network policy is another object in the kubernetes namespace. Just like PODs,
ReplicaSets or Services. You apply a network policy on selected pods.

335

KodeKloud.com

Network Policy

3306
DB
Pod

Network Policy

Allow Ingress
Traffic From API

Pod on Port 3306

A Network policy is another object in the kubernetes namespace. Just like PODs,
ReplicaSets or Services. You link a network policy to one or more pods. You can
define rules within the network policy. In this case I would say, only allow Ingress
Traffic from the API Pod on Port 3306. Once this policy is created, it blocks all other
traffic to the Pod and only allows traffic that matches the specified rule. Again, this is
only applicable to the Pod on which the network policy is applied.

336

KodeKloud.com

Network Policy - Selectors

DB
Pod

Network Policy

labels:

role: db

podSelector:

matchLabels:

role: db

Allow Ingress
Traffic From API

Pod on Port 3306

So how do you apply or link a network policy to a Pod? We use the same technique
that was used before to link ReplicaSets or Services to Pods. Labels and Selectors. We
label the Pod and use the same labels on the pod selector field in the network policy.

337

KodeKloud.com

policyTypes:

- Ingress

ingress:

- from:

- podSelector:

matchLabels:

name: api-pod

Network Policy - Rules

Allow
Ingress
Traffic
From

API Pod
on

Port 3306

ports:

- protocol: TCP

port: 3306

And then we build our rule. Under policyTypes specify weather the rule is to allow
ingress or egress traffic or both. In our case we only want to allow ingress traffic to
the db-pod. So we add Ingress. Next, we specify the ingress rule, that allows traffic
from the API pod. And you specify the api pod, again using labels and selectors. And
finally the port to allow traffic on, which is 3306.

338

KodeKloud.com

Network Policy
apiVersion:

kind:

metadata:

spec:

networking.k8s.io/v1

NetworkPolicy

name: db-policy

policyTypes:

- Ingress

ingress:

- from:

- podSelector:

matchLabels:

name: api-pod

ports:

- protocol: TCP

port: 3306

podSelector:

matchLabels:

role: db

kubectl create –f policy-definition.yaml

Let us put all that together. We start with a blank object definition file and as usual
we have apiVersion, kind, metadata and spec. The apiVersion is networking.k8s.io/v1,
the kind is NetworkPolicy. We will name the policy db-policy. And then under the
spec section, we will first move the pod selector to apply this policy to the db pod.
Then we will move the rule we created in the previous slide under it. And that’s it. We
have our first network policy ready. Run the kubectl create command to create the
policy.

339

KodeKloud.com

Note

Solutions that Support Network Policies:
• Kube-router
• Calico
• Romana
• Weave-net

Solutions that DO NOT Support Network Policies:
• Flannel

Remember that Network Policies are enforced by the Network Solution implemented
on the Kubernetes Cluster. And not all network solutions support network policies. A
few of them that are supported are kube-router, Calico, Romana and Weave-net. If
you used Flannel as the networking solution, it does not support network policies as
of this recording. Always refer to the network solution’s documentation to see
support for network policies. Also remember, even in a cluster configured with a
solution that does not support network policies, you can still create the policies, but
they will just not be enforced. You will not get an error message saying the
networking solution does not support network policies.

Well, that’s it for this lecture. Walk through the documentation and head over to
coding challenges to practice network policies.

340

KodeKloud.com

Practice Test

Check Link
Below!

Access test here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743700

341

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Persistent Volumes

Persistent Volume Claims

Hello and welcome to this lecture on Persistent Volumes in Kubernetes. My name is
Mumshad Mannambeth and we are going through the Certified Kubernetes
Application Developer’s course.

342

KodeKloud.com

343

Volumes

Before we head into persistent volumes let us start with Volumes in Kubernetes.

343

KodeKloud.com

Let us look at volumes in Docker first. Docker containers are meant to be transient in
nature. Which means they are meant to last only for a short period of time. They are
called upon when required to process data and destroyed once finished. The same is
true for the data within the container. The data is destroyed along with the container.

344

KodeKloud.com

Volume
/data

To persist data processed by the containers, we attach a volume to the containers
when they are created. The data processed by the container is now placed in this
volume, thereby retaining it permanently. Even if the container is deleted, the data
generated or processed by it remains.

345

KodeKloud.com

Volumes
346

So how does that work in the Kubernetes world. Just as in Docker, the PODs created
in Kubernetes are transient in nature. When a POD is created to process data and
then deleted, the data processed by it gets deleted as well. For this we attach a
volume to the POD. The data generated by the POD is now stored in the volume, and
even after the POD is delete, the data remains.

346

KodeKloud.com

Volumes & Mounts

Node1

apiVersion: v1

kind: Pod

metadata:

name: random-number-generator

spec:

containers:

- image: alpine

name: alpine

command: ["/bin/sh","-c"]

args: ["shuf -i 0-100 -n 1 >> /opt/number.out;"]

56

volumes:

- name: data-volume

/data

volumeMounts:

- mountPath: /opt

name: data-volume

56

56

hostPath:

path: /data

type: Directory

data-volume

/opt

Let’s look at a simple implementation of volumes. We have a single node kubernetes
cluster. We create a simple POD that generates a random between 1 and 100 and
writes that to a file at /data/number.out and then gets deleted along with the
random number. To retain the number generated by the pod, we create a volume.
And a Volume needs a storage. When you create a volume you can chose to configure
it’s storage in different ways. We will look at the various options in a bit, but for now
we will simply configure it to use a directory on the host. In this case I specify a path
/data on the host. This way any files created in the volume would be stored in the
directory data on my node.

Once the volume is created, to access it from a container we mount the volume to a
directory inside the container. We use the volumeMounts field in each container to
mount the data-volume to the directory /opt within the container. The random
number will now be written to /opt mount inside the container, which happens to be
on the data-volume which is in fact /data directory on the host. When the pod gets
deleted, the file with the random number still lives on the host.

347

KodeKloud.com

volumes:

- name: data-volume

hostPath:

path: /data

type: Directory

Node1

data-volume

Let’s take a step back and look at the Volume Storage option. We just used the
hostPath option to configure a directory on the host as storage space for the volume.
Now that works on a single node.

348

KodeKloud.com

volumes:

- name: data-volume

hostPath:

path: /data

type: Directory Node1

data-volume

Node2 Node3

/data /data /data

However it is not recommended for use in a multi-node cluster. This is because the
PODs would use the /data directory on all the nodes, and expect all of them to be the
same and have the same data. Since they are on different servers, they are in fact not
the same, unless you configure some kind of external replicated clustered storage
solution.

349

KodeKloud.com

Volume Types

volumes:

- name: data-volume

hostPath:

path: /data

type: Directory

Node1

data-volume

Node2 Node3

/data /data /data

NFS

Kubernetes supports several types of standard storage solutions such as NFS,
glusterFS, Flocker, FibreChannel, CephFS, ScaleIO or public cloud solutions like AWS
EBS, Azure Disk or File or Google’s Persistent Disk.

350

KodeKloud.com

Volume Types

volumes:

- name: data-volume

hostPath:

path: /data

type: Directory

Node1

data-volume

Node2 Node3

awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

/data /data /data

For example, to configure an AWS Elastic Block Store volume as the storage or the
volume, we replace hostPath field of the volume with awsElasticBlockStore field
along with the volumeID and filesystem type. The Volume storage will now be on
AWS EBS.

Well, that’s it about Volumes in Kubernetes. We will now head over to discuss
Persistent Volumes next.

351

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Persistent Volumes

Persistent Volume Claims

Hello and welcome to this lecture on Persistent Volumes in Kubernetes. My name is
Mumshad Mannambeth and we are going through the Certified Kubernetes
Application Developer’s course.

352

KodeKloud.com

353

Persistent
Volumes

In the last lecture we learned about Volumes. Now we will discuss Persistent Volumes
in Kubernetes.

353

KodeKloud.com

data-volume
volumes:

- name: data-volume

awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

When we created volumes in the previous section we configured volumes within the
POD definition file. So every configuration information required to configure storage
for the volume goes within the pod definition file.

354

KodeKloud.com

data-volume data-volume data-volume data-volume data-volume data-volume data-volume data-volume

Now, when you have a large environment with a lot of users deploying a lot of PODs,
the users would have to configure storage every time for each POD. Whatever storage
solution is used, the user who deploys the PODs would have to configure that on all
POD definition files in his environment. Every time a change is to be made, the user
would have to make them on all of his PODs.

355

KodeKloud.com

data-volume data-volume data-volume data-volume data-volume data-volume data-volume data-volume

Instead, you would like to manage storage more centrally.

356

KodeKloud.com

PVCPVC

Persistent Volume

data-volume data-volume data-volume data-volume data-volume data-volume data-volume data-volume

PVC PVC PVC

Persistent Volumes (PVs)

PVC PVC PVC

Persistent Volume Claim (PVC)

You would like it to be configured in a way that an administrator can create a large
pool of storage, and then have users carve out pieces from it as required. That is
where Persistent Volumes can help us. A Persistent Volume is a Cluster wide pool of
storage volumes configured by an Administrator, to be used by users deploying
applications on the cluster. The users can now select storage from this pool using
Persistent Volume Claims.

357

KodeKloud.com

Persistent Volume

Persistent Volume (PV)

apiVersion:

kind:

metadata:

spec: ReadOnlyMany

ReadWriteOnce

ReadWriteMany

v1

PersistentVolume

name: pv-vol1

accessModes:

- ReadWriteOnce

capacity:

storage: 1Gi

hostPath:

path: /tmp/data

kubectl create –f pv-definition.yaml

pv-definition.yaml

kubectl get persistentvolume

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pv-vol1 1Gi RWO Retain Available 3m

awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

Let us now create a Persistent Volume. We start with the base template and update
the apiVersion, set the Kind to PersistentVolume, and name it pv-vol1. Under the spec
section specify the accessModes.

Access Mode defines how the Volume should be mounted on the hosts. Weather in a
ReadOnly mode, or ReadWrite mode. The supported values are ReadOnlyMany,
ReadWriteOnce or ReadWriteMany mode.

Next, is the capacity. Specify the amount of storage to be reserved for this Persistent
Volume. Which is set to 1GB here.

Next comes the volume type. We will start with the hostPath option that uses storage
from the node’s local directory. Remember this option is not to be used in a
production environment.

To create the volume run the kubectl create command and to list the created volume
run the kubectl get persistentvolume command.

Replace the hostPath option with one of the supported storage solutions as we saw

358

in the previous lecture like AWS Elastic Block Store.

Well that’s it on Persistent Volumes in this lecture. Head over to coding challenges
and practice configuring Persistent Volumes.

358

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Persistent Volumes

Persistent Volume Claims

Hello and welcome to this lecture on Persistent Volumes in Kubernetes. My name is
Mumshad Mannambeth and we are going through the Certified Kubernetes
Application Developer’s course.

359

KodeKloud.com

360

Persistent
Volume Claims

In the last lecture we learned about Volumes. Now we will discuss Persistent Volumes
in Kubernetes.

360

KodeKloud.com

Persistent Volume Claim

PVC PVCPVC PVCPVC PVC

PV PVPV PV PV PV

In the previous lecture we created a Persistent Volume. Now we will create a
Persistent Volume Claim to make the storage available to a node.

Persistent Volumes and Persistent Volume Claims are two separate objects in the
Kubernetes namespace. An Administrator creates a set of Persistent Volumes and a
user creates Persistent Volume Claims to use the storage. Once the Persistent Volume
Claims are created, Kubernetes binds the Persistent Volumes to Claims based on the
request and properties set on the volume.

361

KodeKloud.com

Binding

PVC PVCPVC PVCPVC PVC

PVPV PV PVPV PV

Once the Persistent Volume Claims are created, Kubernetes binds the Persistent
Volumes to Claims based on the request and properties set on the volume.

362

KodeKloud.com

Binding

PVC
PVC

PVC PVC
PVC PVC

PV
PV

PV

PV

PV

PV

Sufficient Capacity Access Modes Storage ClassVolume Modes

Every Persistent Volume Claim is bound to a single Persistent volume. During the
binding process, kubernetes tries to find a Persistent Volume that has sufficient
Capacity as requested by the Claim, and any other requested properties such as
Access Modes, Volume Modes, Storage Class etc.

363

KodeKloud.com

Binding

PVC

PV PV

Sufficient Capacity Access Modes Storage ClassVolume Modes Selector

labels:

name: my-pv

selector:

matchLabels:

name: my-pv

However, if there are multiple possible matches for a single claim, and you would like
to specifically use a particular Volume, you could still use labels and selectors to bind
to the right volumes.

364

KodeKloud.com

Binding

PVC

PV

Sufficient Capacity Access Modes Storage ClassVolume Modes Selector

Pending

Finally, note that a smaller Claim may get bound to a larger volume if all the other
criteria matches and there are no better options. There is a one-to-one relationship
between Claims and Volumes, so no other claim can utilize the remaining capacity in
the volume. If there are no volumes available the Persistent Volume Claim will remain
in a pending state, until newer volumes are made available to the cluster. Once newer
volumes are available the claim would automatically be bound to the newly available
volume.

365

KodeKloud.com

Persistent Volume Claim

apiVersion:

kind:

metadata:

spec:

pvc-definition.yaml

v1

PersistentVolumeClaim

name: myclaim

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 500Mi

kubectl create –f pvc-definition.yaml

kubectl get persistentvolumeclaim

NAME STATUS VOLUME CAPACITY ACCESS MODES
myclaim Pending

Let us now create a Persistent Volume Claim. We start with a blank template. Set the
apiVersion to v1 and kind to PersistentVolumeClaim. We will name it myclaim. Under
specification set the accessModes to ReadWriteOnce. And set resources to request a
storage of 500 mega bytes. Create the claim using kubectl create command. To view
the created claim run the kubectl get persistentvolumeclaim command. We see the
claim in a pending state.

366

KodeKloud.com

Persistent Volume Claim

apiVersion:

kind:

metadata:

spec:

pvc-definition.yaml

v1

PersistentVolumeClaim

name: myclaim

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 500Mi

kubectl create –f pvc-definition.yaml

apiVersion:

kind:

metadata:

spec:

v1

PersistentVolume

name: pv-vol1

accessModes:

- ReadWriteOnce

capacity:

storage: 1Gi

hostPath:

path: /tmp/data

pv-definition.yaml

awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

When the claim is created, kubernetes looks at the volume created previously. The
access Modes match. The capacity requested is 500 Megabytes but the volume is
configured with 1 GB of storage. Since there are no other volumes available, the PVC
is bound to the PV.

367

KodeKloud.com

View PVCs

kubectl get persistentvolumeclaim

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myclaim Bound pv-vol1 1Gi RWO 43m

When we run the get volumes command again, we see the claim is bound to the
persistent volume we created. Perfect!

368

KodeKloud.com

Delete PVCs

kubectl delete persistentvolumeclaim myclaim

persistentvolumeclaim "myclaim" deleted

PVC

PV

persistentVolumeReclaimPolicy: RetainDeleteRecycle

To delete a PVC run the kubectl delete persistentvolumeclaim command. But happens
to the Underlying Persistent Volume when the claim is deleted? You can chose what
is to happen to the volume. By default, it is set to Retain. Meaning the Persistent
Volume will remain until it is manually deleted by the administrator. It is not available
for re-use by any other claims. Or it can be Deleted automatically. This way as soon as
the claim is deleted, the volume will be deleted as well. Or a third option is to recycle.
In this case the data in the volume will be scrubbed before making it available to
other claims.

Well that’s it for this lecture. Head over to the coding exercises section and practice
configuring and troubleshooting persistent volumes and volume claims in
Kubernetes.

369

KodeKloud.com

Practice Test

Check Link
Below!

Access Test Here: https://kodekloud.com/courses/kubernetes-certification-
course/lectures/6743707

370

KodeKloud.com

Challenges

Check Link
Below!

Access the test here https://kodekloud.com/courses/kubernetes-certification-
course/lectures/8414630

371

KodeKloud.com

Course Objectives

Core Concepts

Multi-Container Pods

Observability

Configuration

Pod Design

Services & Networking

State Persistence

Certification Tips

Time Management

Hello there!.

372

KodeKloud.com

373

TIME
MANAGEMENT

In this lecture we will discuss , how to effectively manage your time during the
certification exam. And this is applicable to all practical exams of this kind.

373

KodeKloud.com

Certified Kubernetes
Application Developer

(CKAD)

Certified Kubernetes
Administrator

(CKA)

3 2

24 19

As of today, you get from 2 hours to 2.5 hours to complete the kubernetes
certification exams. The duration of the administrators exam is 2.5 hours and the
application developers exam is 2 hours. Now that is not sufficient to complete all the
questions, so it is important to manage your time effectively to pass the exams.

374

KodeKloud.com

During the exam, you are presented with a set of questions. Some of which may be
very easy…

375

KodeKloud.com

some that makes you think a little bit….

376

KodeKloud.com

and some that you have no clue about, hopefully not too many of that. And they are
not there in any particular order. You may have easy or tough questions in the
beginning or towards the end.

377

KodeKloud.com

Now you don’t have to get all of it right. You only need to solve enough to gain the
minimum required percentage to pass the exam. So it is very important to attempt all
of the questions.

378

KodeKloud.com

You don’t want to get stuck in any of the early tough questions, and not have enough
time to attempt the easy ones that come after.

379

KodeKloud.com

You have the option to attempt the questions in any order you like. So you could skip
the tough ones and chose to attempt all the easy ones first. Once you are done, if you
still have time, you can go back and attempt the ones you skipped.

380

KodeKloud.com

1. Attempt all Questions

So that was the first and most important tip, attempt all the questions.

381

KodeKloud.com

2. Don’t get Stuck!

The second tip is not get stuck on any question. Even for a simple one.

382

KodeKloud.com

kubectl create –f deployment-definition.yml

error: unable to recognize “deployment-definition.yaml": no
matches for kind “deployment" in version “apps/v1"

2

apiVersion:

kind:

metadata:

spec:

deployment-definition.yml

name: myapp-deployment

labels:

app: myapp

type: front-end

apps/v1

metadata:

name: myapp-pod

labels:

app: myapp

type: front-end

spec:

containers:

- name: nginx-container

image: nginx

replicas:

selector:

matchLabels:

type: web

template:

3

deployment

:1.7.1

Deployment

kubectl create –f deployment-definition.yml

Invalid value: map[string]string{"name":“web"}: `selector`
does not match template `labels`

For example you are attempting to solve a question that looks simple. You know what
you are doing, so you make an attempt. The first time you try to execute your work,
it fails. You read the error message and realize that you had made a mistake, like a
typo. So you go back and fix it and run it again. This time you get an error message,
but you are not able to make any sense out of it. Even though that was an easy
question, and you knew you could do it, if you are not able to make any sense out of
the error message, don’t spend any more time troubleshooting or debugging that
error. Mark that question for review later, skip it and move on to the next.

Now, I KNOW that urge to troubleshoot and fix issues. But this is not the time for it.
Leave it to the end and do all the troubleshooting you want after you have attempted
all the questions.

383

KodeKloud.com

3 4

So here is how I would go about it. Start with the first question. If it looks easy,
attempt it. Once you solve it, move over to the next. If that looks easy, attempt it.
Once that is finished, go over to the next. If that looks hard, and you think you will
need to read up on it, mark it down and go over to the next.

The next one looks a bit difficult, but you think you can figure it out. So give it a try.
First attempt it fails, you know what the issue is so you try to fix it. The second
attempt, it fails again and you don’t know what the issue is. Don’t spend any more
time on it, as there are many easy questions waiting ahead. Mark it down, for review
later and go over to the next.

Follow the same technique to finish as many questions as possible.

384

KodeKloud.com

3. Get good with YAML
apiVersion:

kind:

metadata:

spec:

deployment-definition.yml

name: myapp-deployment

labels:

app: myapp

type: front-end

apps/v1

metadata:

name: myapp-pod

labels:

app: myapp

type: front-end

spec:

containers:

- name: nginx-container

image: nginx

replicas:

selector:

matchLabels:

type: web

template:

3

:1.7.1

Deployment

apiVersion:

kind:

metadata:

spec:

deployment-definition.yml

name: myapp-deployment

labels:

app: myapp

type: front-end

apps/v1

metadata:

name: myapp-pod

labels:

app: myapp

type: front-end

spec:

containers:

- name: nginx-container

image: nginx

replicas:

selector:

matchLabels:

type: web

template:

3

:1.7.1

Deployment

The third tip, is to be really good with YAML. You must spend enough time practicing
your definition files in advance. If, for each question, you are having to go through
each line of your YAML file and fix the indentation errors, you are not going to be able
to make it through all questions. Your YAML files don’t have to look pretty. Because
nobody is going to look at them. I am guessing that the work is evaluated
automatically, so only the end result is evaluated and not how pretty your YAML files
are.

So even if your file looks like this one on the right, where as it should have looked
like the one on the left, it’s still fine as long as the structure of the file is correct. And
that you have the right information in the file and are able to create the required
kubernetes object using the file. For that you need to get your YAML basics right. If
you are a beginner, check out the coding exercises at KodeKloud that helps you
practice and get good with YAML.

385

KodeKloud.com

4. Use Shortcuts/Aliases

po for PODs
rs for ReplicaSets
deploy for Deployments
svc for Services
ns for Namespaces
netpol for Network policies
pv for Persistent Volumes
pvc for PersistentVolumeClaims
sa for service accounts

386

KodeKloud.com

Time Management

Well that’s it for this lecture. If you have any more tips, please feel free to leave a
comment below. Thank you for listening and I wish you good luck with your exams.

387

KodeKloud.com

THANK YOU!
m m u m s h a d @ g m a i l . c o m

388

